Terroir 2012 banner
IVES 9 IVES Conference Series 9 On the meaning of looking for terroir perceptions in blind tastings

On the meaning of looking for terroir perceptions in blind tastings

Abstract

If one considers as “physical or sensory attributes” of a wine its concentrations of alcohol and of other substances, it can be stated that another class of attributes exists, which can be called “metaphysical attributes”, mainly linked to feelings ignited by terroir information. Therefore, wine consumers can be divided in two categories: a) the common consumer, who drinks wine as a hedonistic experience, focusing in the physical attributes (taste, aroma, texture); b) the wine lover, who, besides asking for these basic pleasures, longs for metaphysical or spiritual information, which comes along with data on the production region, its traditions and landscape, the vineyard, winemaking methods and culture, and on the winemaker’s persona. All these metaphysical information are lost in blind tastings, where, primarily, the physical attributes are sensed.

Measurements of chemicals in wines from different terroirs tend to indicate that typicity can be detected; nevertheless, variations in vintage, clones, assemblages, and methods give variability even to terroir wines. In a blind tasting, the eventual identification of terroir characteristics makes a call to the memory, which is not an exact recorder This work reports results from 30 blind tasting sessions, focused on wines from dozens of viticultural regions; it reports also results from seven non-blind tastings of handcrafted wines from the same producer, performed in the winery, as reported in the media. Results show that, even in panels of veteran tasters, terroir attributes are heavily lost in blind tastings; however, reports from non-blind tastings are remarkably focused in a few descriptors. It is concluded that perception of the terroir component, and so, the terroir value, is deeply linked to knowledge of metaphysical attributes, being, nevertheless, consistent from a sensorial perspective.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Jorge DUCATI (1,2), Vilmar BETTÚ (3)

(1) Centro Estadual de Pesquisas em Sensoriamento Remoto e Meteorologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, Brazil
(2) Sociedade Brasileira dos Amigos do Vinho – Regional Sul, Rua Liberdade 120, Porto Alegre, Brazil
(3) Reliquiæ Vini, Estrada do Sabor, Estrada Geral Sao Gabriel, Garibaldi, Brazil

Contact the author

Keywords

wine attributes, sensory perception, taste of place

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

“Q & A” of the european commission for labeling and desalcoholization for wines: european wine “soft-law”?

Recently, the European Commission seems to have inaugurated a new mechanism for regulating the wine sector. Through two communications, articulated in the form of “Questions & Answers”, concerning the new rules for labeling (24.11.2023) and dealcoholization of wine (15.01.2024), the Commission is not simply “explaining” the new rules but, in an approach close to the theory of “Circulaire Normative” established in comparative law, chooses among different interpretations and even adds Praeter Legem constraints.

Fermentative volatile compounds and chromatic characteristics can contribute to Italian white wines diversity

Perceived aroma plays an important role in wine quality, and it depends mainly on the volatile composition. Volatile organic compounds (VOCs) from grapes and those formed during winemaking are involved in the sensory complexity of wines. In aroma-neutral winegrape varieties, the winemaking process itself, and particularly alcoholic fermentation (AF), impacts strongly on the organoleptic characteristics of wines due to the formation of volatile alcohols, acids, and esters. In addition, phenolic compounds could contribute not only to the wine color but also to VOCs evolution during AF.

Understanding graft union formation by using metabolomic and transcriptomic approaches during the first days after grafting in grapevine

Since the arrival of Phyloxera (Daktulosphaira vitifolia) in Europe at the end of the 19th century, grafting has become essential to cultivate Vitis vinifera. Today, grafting provides not only resistance to this aphid, but it used to adapt the cultivars according to the type of soil, environment, or grape production requirements by using a panel of rootstocks. As part of vineyard decline, it is often mentioned the importance of producing quality grafted grapevine to improve vineyard longevity, but, to our knowledge, no study has been able to demonstrate that grafting has a role in this context. However, some scion/rootstock combinations are considered as incompatible due to poor graft union formation and subsequently high plant mortality soon after grafting. In a context of climate change where the creation of new cultivars and rootstocks is at the centre of research, the ability of new cultivars to be grafted is therefore essential. The early identification of graft incompatibility could allow the selection of non-viable plants before planting and would have a beneficial impact on research and development in the nursery sector. For this reason, our studies have focused on the identification of metabolic and transcriptomic markers of poor grafting success during the first days/week after grafting; we have identified some correlations between some specialized metabolites, especially stilbenes, and grafting success, as well as an accumulation of some amino acids in the incompatible combination. The study of the metabolome and the transcriptome allowed us to understand and characterise the processes involved during graft union formation.

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins.

Nitrogen requirements of table grape cultivars grown in the san Joaquin valley of California

Ground water in the interior valleys of California is contaminated with nitrates derived from agricultural activities, primarily the over-fertilization of crops.