Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Ancient zoning in the world (T2010) 9 Caractérisation et valorisation des terroirs de l’appellation d’origine contrôlée Puisseguin-Saint-Emilion

Caractérisation et valorisation des terroirs de l’appellation d’origine contrôlée Puisseguin-Saint-Emilion

Abstract

Le terroir viticole, qui est la base de la délimitation des aires d’Appellation d’Origine Contrôlée, est une notion complexe dans laquelle sont en interaction la vigne, les facteurs naturels tels que le sol, le climat, ainsi que le facteur humain à travers les pratiques des viticulteurs. Le terroir conditionne la composition des raisins et ainsi la qualité et la typicité des vins qui en sont issus. Suite à la fusion du syndicat viticole de Puisseguin avec celui de Saint-Emilion pour former le Conseil des Vins de Saint-Emilion, et dans une démarche globale de connaissance et de valorisation de cette nouvelle entité géographique, une étude sur le secteur de l’AOC de Puisseguin a été menée. Une cartographie des sols au 1/25 000 décrivant les différentes unités pédologiques a été réalisée ainsi qu’une analyse du système de conduite. Dans chaque unité pédologique identifiée, une fosse a été décrite puis analysée, permettant de définir les principales caractéristiques agronomiques de ces sols. Des conseils adaptés à chaque unité sont proposés afin de mieux valoriser ces terroirs. Chaque viticulteur a ainsi pu bénéficier des résultats de cette étude à travers un manuel technique et des communications orales.

English version: Terroir which is the basis for the controlled origin of wines (“Appellation d’Origine Contrôlée”) is a very complex concept including the vine, climate, soil and human factors such as technical practices. Terroir plays a very important role in grape composition and in wine quality and typicity. Following to the merge of Puisseguin and Saint-Emilion winegrowers associations and in order to improve the knowledge and the valorization of this terroir, a study was carried out on the Puisseguin area. This study comprized an identification of pedological units through soil mapping at a scale of 1/25 000th and a survey of currently existing training systems. For each pedological unit, advices were formulated to improve terroir valorization. Moreover, every wine grower received these results through a technical manual and oral communications.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2010

Type: Article

Authors

Laure de RESSEGUIER (1), Jean-Philippe ROBY (1), Jean-Charles VAN HOVE (2) et Cornelis van LEEUWEN (1)

(1) ENITA de Bordeaux, UMR EGFV, ISVV, 1 cours du Général de Gaulle, CS 40201, 33 175 Gradignan cedex, France
(2) Clos Marguerite, 4 Flemmings road, PO Box 7, Seddon, Marlbor

Keywords

Vine plant – terroir – soil – mapping – training system – valorisation – AOC Puisseguin Saint-Emilion

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Advanced phenology due to climate change is projected to shift precipitation patterns for key cultivar-region combinations in New Zealand

Context of the study. Shifts in grapevine phenology driven by temperature increase due to climate change may result in different rainfall profiles between phenological stages.

Bioprotection and oenological tannins association to protect Rosé wine color

The bioprotection of musts or grapes is a strategy for limiting sulfiting during winemaking and more specifically at pre-fermentative step. The most preconized yeasts in bioprotection mainly belong to Metschnikowia pulcherrima and Torulaspora delbrueckii species. While previous studies have demonstrated that bioprotectant non-Saccharomyces strains were able to protect musts and wines against microbial spoilage as well as sulfites, they cannot protect must against oxidation which appears to be the main limit of this practice.

Impact on leaf morphology of Vitis vinifera L. cvs Riesling and Cabernet Sauvignon under Free Air Carbon dioxide Enrichment (FACE)

Atmospheric carbon dioxide (CO2) concentration has continuously increased since pre-industrial times from 280 ppm in 1750, and is predicted to exceed 700 ppm by the end of 21st century. For most of C3 plant species elevated CO2 (eCO2) improve photosynthetic apparatus results in an increased plant biomass production. To investigate the effects of eCO2 on morphological leaf characteristics the two Vitis vinifera L. cultivars, Riesling and Cabernet Sauvignon, grown in the Geisenheim VineyardFACE (Free Air Carbon dioxide Enrichment) system were used. The FACE site is located at Geisenheim University (49° 59′ N, 7° 57′ E, 94 m above sea level), Germany and was implemented in 2014 comparing future atmospheric CO2-concentrations (eCO2, predicted for the mid-21st century) with current ambient CO2-conditions (aCO2). Experiments were conducted under rain-fed conditions for two consecutive years (2015 and 2016). Six leaves per repetition of the CO2 treatment were sampled in the field and immediately fixed in a FAA solution (ethanol, H2O, formaldehyde and glacial acetic acid). After 24 h leaf samples were transferred and stored in an ethanol solution. Subsequently, leaf tissue was dehydrated using ethanol series and embedded in paraffin. By using a rotary microtomesections of 5 µm were prepared and fixed on microscopic slides. Subsequent the samples were stained using consecutive staining and washing solutions. Afterwards pictures of the leaf cross-sections were taken using a light microscope and consecutive measurements were conducted with an open source image software. Differences found in leaf cross-sections of the two CO2 treatments were detected for the palisade parenchyma. Leaf thickness, upper and lower epidermis and spongy parenchyma remained less affected under eCO2 conditions. The observed results within grapevine leaf tissues can provide first insights to seasonal adaptation strategies of grapevines under future elevated CO2 concentrations.

Designing and managing a sustainable vineyard in a climate change scenario

Extension of the growing season, compression of the annual growth cycle and higher frequency and severity of weather extreme events are consistent features of global warming. While mitigation of factors causing global warming is necessary in the medium-long term, wine growers need “ready to go” adaptation practices to counteract negative effects bound to climate change. This must be done in a sustainably way, meaning that remunerative yield, desired grape quality, low production cost and environment friendly solutions must be effectively merged. In this work, we will review contribution given over the last two decades prioritizing issues related to scion and rootstock choice, changes in vineyard floor management, new perception related to the use of irrigation in vineyards, adaptation practices aimed at decompress maturity, solutions to counteract or minimize damages due to late frost and sunburn and, lastly, some hints on how precision viticulture can help with all of this.

Smart microgrid: how to reduce costs and CO2 emissions in wineries and vineyards

The wine sector is greatly threatened by climate change, but is also one of its contributors.