Terroir 2010 banner
IVES 9 IVES Conference Series 9 Texas terroir: gis characterization of the texas high plains ava

Texas terroir: gis characterization of the texas high plains ava

Abstract

The Texas High Plains AVA is one of eight officially recognized wine regions in Texas, established in 1993. Six local wineries, including the second-largest in Texas, are supported by approximately 50 vineyards, which are also major suppliers of grapes to Texas wineries outside the region. The distinctive characteristics of the Texas High Plains AVA have contributed to the region’s reputation for producing medal-winning red wines with excellent color and good tannins, primarily from Cabernet Sauvignon and Merlot. The large region (3.6 million ha) is known for its semi-arid climate with hot summers and mild winters, and very deep, well-drained soils. However, little detailed information is available on the spatial variability of growing conditions within the region. The Texas AVA GIS was constructed with datasets describing soils, elevation, topography, and climatic variables of significance to grape production for all 8 winegrowing regions in the state. Growing degree-days (GDD) and ripening period mean temperature (RPMT) in the Texas High Plains AVA decrease from southeast to northwest as elevation increases. The range of GDD is 2028 to 2653. RPMT ranges from 23.8-26.7oC in August and 19.9-22.6oC in September. Precipitation ranges from 41.4-63.7 cm, increasing from west to east. High solar radiation contributes to vine fruitfulness and color development in red wine grapes. Vineyards are predominantly planted on the reddish-brown, deep fine sandy loam and sandy clay loam soils (Amarillo, Patricia, and the related Brownfield series). Patricia soils predominate in the southern portion of the AVA; Amarillo is overall more common and found primarily in central areas of the region. An interactive website was created for public access to the GIS – the Winegrowing Regions of Texas [txwineregions.tamu.edu]. Such data will be critical for vineyard site selection and matching grape cultivars to site as the region’s wine industry continues to expand and experiment with warm-climate cultivars.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

E.W. Hellman (1,2), E.A. Takow (3), M.D. Tchakerian (3), and R.N. Coulson (3)

(1) Texas A&M University, AgriLife Research and Extension Center, 1102 East FM 1294, Lubbock, TX 79403 USA
(2) Department of Plant and Soil Science, Texas Tech University
(3) Knowledge Engineering Laboratory, Texas A&M University, College Station, TX 77843 USA

Contact the author

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Social and environmental impacts of the adoption of a variety of table grape in the region of vale do São Francisco – Brazil

This study explores and analyzes the socio-environmental implications associated with the cultivation of the “brs-vitoria” table grape variety. Focusing on its adoption by farmers in the vale do submédio São Francisco region in Brazil, this study delves into the diverse impacts and changes brought about since its introduction, encompassing both the social and environmental dimensions of agricultural practices in the area. Embrapa, brazil’s federal agricultural research institution, encompasses a network of 43 thematic research centers spread across the nation.

Deconstructing the soil component of terroir: from controversy to consensus

Wine terroir describes the collectively recognized relation between a geographical area and the distinctive organoleptic characteristics of the wines produced in it. The overriding objective in terroir studies is therefore to provide scientific proof relating the properties of terroir components to wine quality and typicity. In scientific circles, the role of climate (macro-, meso- and micro-) on grape and wine characteristics is well documented and accepted as the most critical. Moreover, there has been increasing interest in recent years about new elements with possible importance in shaping wine terroir like berry/leaf/soil microbiology or even aromatic plants in proximity to the vineyard conferring flavors to the grapes. However, the actual effect of these factors is also dependent on complex interactions with plant material (variety/clone, rootstock, vine age) and with human factors.
The contribution of soil, although a fundamental component of terroir and extremely popular among wine enthusiasts, remains a much-debated issue among researchers. The role of geology is probably the one mostly associated by consumers with the notion of terroir with different parent rocks considered to give birth to different wine styles. However, the relationship between wine properties and the underlying parent material raises a lot of controversy especially regarding the actual existence of rock-derived flavors in the wine (e.g. minerality). As far as the actual soil properties are concerned, the effect of soil physical properties is generally regarded as the most significant (e.g sandy soils being associated with lighter wines while those on clay with colored and tannic ones) mostly through control of water availability which ultimately modifies berry ripening conditions either directly by triggering biosynthetic pathways, or indirectly by altering vigor and yield components. The role of soil chemistry seems to be weakly associated to wine sensory characteristic, although N, K, S and Ca, but also soil pH, are often considered important in the overall soil effect.
Recently, in the light of evidence provided by precision agriculture studies reporting a high variability of vineyard soils, the spatial scale should also be taken into consideration in the evaluation of the soil effects on wines. While it is accepted that soil effects become more significant than climate on a local level, it is not clear whether these micro-variations of vineyard soils are determining in the terroir effect. Moreover, as terroir is not a set of only natural factors, the magnitude of the contribution of human-related factors (irrigation, fertilization, soil management) to the soil effect still remains ambiguous. Lastly, a major shortcoming of the majority of works about soil effects on wine characteristics is the absence of connection with actual vine physiological processes since all soil effects on grape and wine chemistry and sensorial properties are ultimately mediated through vine responses.
This article attempts to breakdown the main soil attributes involved in the terroir effect to suggest an improved understanding about soil’s true contribution to wine sensory characteristics. It is proposed that soil parameters per se are not as significant determining factors in the terroir effect but rather their mutual interactions as well as with other natural and human factors included in the terroir concept. Consequently, similarly to bioclimatic indices, composite soil indices (i.e. soil depth, water holding capacity, fertility, temperature etc), incorporating multiple soil parameters, might provide a more accurate and quantifiable means to assess the relative weight of the soil component in the terroir effect.

Q-NMR measurements: quantitative analysis of wine composition applied to Bordeaux red wines authenticity control

Traceability of wine is today a consumer demand and a scientific challenge. The methods of analysis must be able to control three fundamental parameters: the geographical origin, the grape varieties, and the vintage.

The dynamics of δ13C and δ18O in musts during berries development

Aim: Many processes or reactions that occur in plants involved isotopic discrimination. Water availability, for example, affects the isotopic ratio of carbon (δ13C) and oxygen (δ18O). In viticulture, δ13C is used in experiments related to water relations and irrigation in vineyards. δ18O is used much less but it could be a good complement to δ13C. The aim of this study was to generate knowledge on how these isotopic ratios, measured in musts, could help to better understand the water behavior of grape varieties. 

What about oxygen transfer during wine aging in barrels?

During wine aging, several complex phenomena of gas transfer take place in barrels due to the wine/oak contact. The efficiency of this gas transfer varies according to oak wood’s intrinsic physical properties. This research aims to better understand oxygen transfer phenomena through dry oak staves and especially through stave gaps, in order to reevaluate the importance of barrel-making on a barrel’s supply of oxygen. Experimentation was based on the development of an innovative permeameter of laboratory scale, for which the principal operating conditions concerning applied pressure, the choice of liquid phase/gas phase, and the grain type of oak are taken into account and investigated. With a specially developed tightening system, the existing pressure at stave gaps in a barrel could be reproduced on a laboratory scale in order to estimate its influence on oxygen transfer efficiency.