Terroir 2010 banner
IVES 9 IVES Conference Series 9 Texas terroir: gis characterization of the texas high plains ava

Texas terroir: gis characterization of the texas high plains ava

Abstract

The Texas High Plains AVA is one of eight officially recognized wine regions in Texas, established in 1993. Six local wineries, including the second-largest in Texas, are supported by approximately 50 vineyards, which are also major suppliers of grapes to Texas wineries outside the region. The distinctive characteristics of the Texas High Plains AVA have contributed to the region’s reputation for producing medal-winning red wines with excellent color and good tannins, primarily from Cabernet Sauvignon and Merlot. The large region (3.6 million ha) is known for its semi-arid climate with hot summers and mild winters, and very deep, well-drained soils. However, little detailed information is available on the spatial variability of growing conditions within the region. The Texas AVA GIS was constructed with datasets describing soils, elevation, topography, and climatic variables of significance to grape production for all 8 winegrowing regions in the state. Growing degree-days (GDD) and ripening period mean temperature (RPMT) in the Texas High Plains AVA decrease from southeast to northwest as elevation increases. The range of GDD is 2028 to 2653. RPMT ranges from 23.8-26.7oC in August and 19.9-22.6oC in September. Precipitation ranges from 41.4-63.7 cm, increasing from west to east. High solar radiation contributes to vine fruitfulness and color development in red wine grapes. Vineyards are predominantly planted on the reddish-brown, deep fine sandy loam and sandy clay loam soils (Amarillo, Patricia, and the related Brownfield series). Patricia soils predominate in the southern portion of the AVA; Amarillo is overall more common and found primarily in central areas of the region. An interactive website was created for public access to the GIS – the Winegrowing Regions of Texas [txwineregions.tamu.edu]. Such data will be critical for vineyard site selection and matching grape cultivars to site as the region’s wine industry continues to expand and experiment with warm-climate cultivars.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

E.W. Hellman (1,2), E.A. Takow (3), M.D. Tchakerian (3), and R.N. Coulson (3)

(1) Texas A&M University, AgriLife Research and Extension Center, 1102 East FM 1294, Lubbock, TX 79403 USA
(2) Department of Plant and Soil Science, Texas Tech University
(3) Knowledge Engineering Laboratory, Texas A&M University, College Station, TX 77843 USA

Contact the author

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Can wine composition predict quality? A metabolomics approach to assessing Pinot noir wine quality as rated by experts

The perception of wine quality is determined by the assessment of multiple sensory stimuli, including aroma, taste, mouthfeel and visual aspects. With so many different parameters contributing to the overall perception of wine quality, it is important to consider the contribution of all metabolites in a wine when attempting to relate composition to quality.

Agroclimatic zonation for vine growing in Maranhão State, Brazil

es indices agroclimatiques concernant le bilan hydrique et la température moyenne de l’air, ont été utilisés pour la caractérisation des zones avec différentes aptitudes pour la viticulture de vin (Vitis vinifera L.) dans l’état du Maranhão, Brésil.

Data mining approaches for time series data analysis in viticulture. Potential of the bliss (Bayesian functional linear regression with sparse step functions) method to identify temperature effects on yield potential

Context and purpose of the study – Vine development, and hence management, depends on dynamic factors (climate, soil moisture, cultural practices etc.) whose impact can vary depending upon their temporal modalities.

Grapevine, berry and soil Indicators to manage minimal irrigation strategy in semi-arid conditions: example of Grenache noir (Vitis vinifera L.)

Context and purpose of the study. Climate change in many Mediterranean wine-growing regions is resulting in lower rainfall and higher reference evapotranspiration, generally leading to reduced water availability for vines.

Pierce’s disease of grapevines, a new threat to the wine industry in Southern Europe

Pierce’s disease (PD) is considered a potential threat to european viticulture (EPPO a2 list of pathogens since 1981). In the usa, infections caused by the vector-borne bacterium xylella fastidiosa have caused recurrent damage to vineyards in California and the southeastern states. However, vineyards in Europe have remained free of PD until recently, when it was first detected on the island of Mallorca in 2017. The reasons for the absence of PD in continental Europe have not been convincingly explained.