Terroir 2010 banner
IVES 9 IVES Conference Series 9 applicazione dei metodi isotopici e dell’analisi sensoriale negli studi sull’origine dei vini

applicazione dei metodi isotopici e dell’analisi sensoriale negli studi sull’origine dei vini

Abstract

Traceability of agro-alimentary products is very important to certify their origin. This work aimed to characterize wines obtained by the same cultivar (Nero d’Avola and Fiano) – grown in regions with different soil and climate conditions during three vintages (2003-2005) – employing isotopic analyses (NMR and IRMS) and sensory analyses. The effectiveness of stable isotopes ratios (D/H)1, 13C/12C and 18O/16O to assess the geographical origin of wines is affected by the natural variability of these parameters. Their usefulness in wine origin identification improves when they are used jointly. (D/H)1 and 18O/16O ratios depend on latitude but, in the meantime, 18O/16O is noticeably modified by the meteorological course during grape ripening. The most powerful ratios to discriminate between regions are (D/H)1 and 18O/16O (Versini and Monetti, 1996). The isotopic and the sensory analyses together allowed to distinguish wines from different regions.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

Bonello F., Cravero M.C., Tsolakis C., Ciambotti A.

CRA-ENO Centro di Ricerca per l’Enologia. Via P.Micca 35, 14100 Asti, Italia

Contact the author

Keywords

NMR – IRMS – sensory analyses – traceability

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Early development of potential wine styles for PIWI varieties in grapevine breeding

In a framework in which climate change is increasingly recognized as a critical global challenge, traditional viticulture must be reconsidered in order to provide better solutions for future needs [1].

Valorization of winemaking by-products through circular economy approaches

Winemaking generates significant amounts of by-products, such as grape pomace and wine lees, which are primarily used for distillation and composting.

METHYL SALICYLATE, A COMPOUND INVOLVED IN BORDEAUX RED WINES PRODUCED WITHOUT SULFITES ADDITION

Sulfur dioxide (SO₂) is the most commonly used additive during winemaking to protect wine from oxidation and from microorganisms. Thus, since the 18th century, SO₂ was almost systematically present in wines. Recently, wines produced without any addition of SO₂ during all the winemaking process including bottling became more and more popular for consumers. A recent study dedicated to sensory characterization of Bordeaux red wines produced without added SO₂, revealed that such wines were perceived differently from similar wines produced with using SO₂ and were characterized by specific fruity aromas and coolness1,2.

On the losses of dissolved CO2 during champagne aging

A misconception lingers in the minds of some wine consumers that Champagne wines don’t age. It’s largely a myth, certainly as far as the best cuvees are concerned. Actually, during the so-called autolysis period of time (in the closed bottle, after the “prise de mousse”), complex chemical reactions take place when the wine remains in contact with the dead yeast cells, which progressively bring complex and very much sought-after aromas to champagne. Nevertheless, despite their remarkable impermeability to liquid and air, caps or natural cork stoppers used to cork the bottles are not 100% hermetic with regard to gas transfers. Gas species therefore very slowly diffuse through the cap or cork stopper, along their respective inverse partial pressure. After the “prise de mousse”, because the partial pressure of CO2 in the bottleneck reaches up to 6 bars (at 12 °C), gaseous CO2 progressively diffuse from the bottle to the ambient air
(where the partial pressure of gaseous CO2 is only of order of 0,0004 bar).

Antociani ed acidi cinnamici per la caratterizzazione di vitigni in zone diverse della Toscana

The phenolic compounds (cathechins, cynnamic acids, anthocyanidins) in wines made from 6 vine-varieties (Sangiovese, Cabernet S., Nero d’Avola, Foglia Tonda, Pinot N., Mazzese) grown in 4 different pedoclimatic zones of Tuscany (Arezzo, Grosseto, Pisa and Lucca) have been analyzed by HPLC.