Terroir 2010 banner
IVES 9 IVES Conference Series 9 applicazione dei metodi isotopici e dell’analisi sensoriale negli studi sull’origine dei vini

applicazione dei metodi isotopici e dell’analisi sensoriale negli studi sull’origine dei vini

Abstract

Traceability of agro-alimentary products is very important to certify their origin. This work aimed to characterize wines obtained by the same cultivar (Nero d’Avola and Fiano) – grown in regions with different soil and climate conditions during three vintages (2003-2005) – employing isotopic analyses (NMR and IRMS) and sensory analyses. The effectiveness of stable isotopes ratios (D/H)1, 13C/12C and 18O/16O to assess the geographical origin of wines is affected by the natural variability of these parameters. Their usefulness in wine origin identification improves when they are used jointly. (D/H)1 and 18O/16O ratios depend on latitude but, in the meantime, 18O/16O is noticeably modified by the meteorological course during grape ripening. The most powerful ratios to discriminate between regions are (D/H)1 and 18O/16O (Versini and Monetti, 1996). The isotopic and the sensory analyses together allowed to distinguish wines from different regions.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

Bonello F., Cravero M.C., Tsolakis C., Ciambotti A.

CRA-ENO Centro di Ricerca per l’Enologia. Via P.Micca 35, 14100 Asti, Italia

Contact the author

Keywords

NMR – IRMS – sensory analyses – traceability

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Every year, viticulture is facing several outbreaks caused by established diseases, such as downy mildew and grey mould, which possess different life cycles and modes of infection. To cope with these different aggressors, grapevine must recognize them and arm itself with an arsenal of defense strategies. The regulation of secondary metabolites is one of the first reactions of plants upon pathogen challenge. Their rapid biosynthesis can highly contribute to strengthen the defense mechanisms allowing the plant to adapt, defend and survive.

Application of fluorescence spectroscopy with multivariate analysis for authentication of Shiraz wines from different regions

Aim: To investigate the possibility of utilising simultaneous measurements of absorbance-transmittance and fluorescence excitation-emission matrix (A-TEEM) combined with chemometrics, as a robust method that gives rapid results for classification of wines from different regions of South Australia according to their Geographical Indication (GI), and to gain insight into the effect of terroir on inter regional variation.

Innovations on red winemaking process by ultrasound technology

High power ultrasound has been recently recognized one of the most promising technologies in winemaking processes, especially after the recent OIV resolution, concerning the application of ultrasounds on crushed grapes to promote the extraction of skin compounds.

Targeted UHPLC-QqQ-MS/MS metabolomics for phenol identification in grapevine and wine: study of a Tempranillo clone with a dark-blue berry colour

Grapevine vegetative multiplication allows the accumulation of spontaneous mutations and increase intra-cultivar genetic diversity that can be exploited to maintain grape wine quality

Intravarietal diversity: an opportunity for climate change adaptation

Merlot grapevine is the second wine cultivar most planted in the world and especially in the Bordeaux wine region. This cultivar has many advantages in producing high quality wine; however, in the last decade, climate change has increased the sugar concentration in berries at harvest and shortened the maturation cycle. If this has been up to now a great opportunity to improve wine quality profile, we are touching the tipping point. High sugar concentration at harvest induces high alcool content in wine which can negatively impact wine quality. There are many viticultural and oenological practices possible to limit this effect. In this study we focus on plant material through intra-varietal diversity of Merlot cultivar.