Terroir 2010 banner
IVES 9 IVES Conference Series 9 la caratterizzazione dell’areale viticolo “terre alte di brisighella”: aspetti metodologici e primi risultati

la caratterizzazione dell’areale viticolo “terre alte di brisighella”: aspetti metodologici e primi risultati

Abstract

La zonazione viticola rappresenta un importante strumento di indagine per valutare e interpretare le potenzialità produttive e qualitative di un territorio. Con l’obiettivo di studiare come l’ambiente influisca sulla qualità dell’uva nell’areale di Brisighella, sono stati monitorati, nelle annate 2007, 2008 e 2009, 14 vigneti per la varietà Albana e 38 per la varietà Sangiovese, rappresentativi di una area vitata di circa 1000 ha. Dallo studio è stato possibile ricavare i dati relativi ai parametri meteorologici e pedologici, con la produzione di 22 profili con relative analisi dei suoli; per ciascun vigneto sono stati effettuati rilievi agronomici e analisi dei parametri analitici sulle uve.

English version: Zoning is an important instrument to evaluate and interpret the potential production and quality of a terroir. As a result of the studies of how the environment can influence grape quality in the area of Brisighella, 14 vineyards of Albana and 38 of Sangiovese, representatives of at least 1000 ha of planted surface, were monitorized during 2007, 2008, 2009. Thanks to this study it has been possible to obtain metereological data and soil parameters, with the production of 22 profiles and specific soil analysis. For each vineyards agronomic data and analytical parameters on grapes were carried out.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

L. Valenti (1), I. Ghiglieno (1), A. Gozzini (1), G. Nigro (2), Raimondi (3), G. Antolini(4)

(1) Università degli Studi di Milano, Facoltà di Agraria, Dipartimento di Produzione Vegetale, via Celoria 2, 20133. Milano
(2) CRPV, Centro ricerche produzioni vegetali, via Tebano 45, 48018 Faenza (RA)
(3) I.TER Soc. Cop., via Brugnoli 11, Bologna
(4) ARPA Emilia-Romagna, Servizio IdroMeteoClima, viale Silvani 6, 40122 Bologna

Contact the author

Keywords

Production parameters – Analytical parameters – Climate maps – Geological and soil characteristics – Vocational area

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Climate change impact study based on grapevine phenology modelling

In this work we present a joint model of calculation the budbreak and full bloom starting dates which considers the heat sums and allows reliable estimations for five white wine grape varieties

δ13C : A still underused indicator in precision viticulture  

The first demonstration of the interest of carbon isotope composition of sugars in grapevine, as an integrated indicator of vineyard water status, dates back to 2000 (Gaudillère et al., 1999; Van Leeuwen et al., 2001). Thanks to the isotopic discrimination of Carbon that takes place during plant photosynthesis, under hydric stress conditions, it is possible to accurately estimate the photosynthetic activity. Ever since, δ13C has been widely applied with success to zonation, terroir studies and vine physiology research, but is still not widely used by viticulturists. This is quite astonishing by considering the impact of global warming on viticulture and the need to improve water management, that would justify a widespread use of δ13C.
The lack of private laboratories proposing the analysis, the cost of the technology, as well as the long analytical delays, have been detrimental to its development. Some laboratories tried to overcome the analytical difficulties of isotopic analysis by using fourier transformed infrared spectroscopy, as a fast and cheap alternative to the official OIV method (IRMS). These claimed FTIR models have never been published or peer reviewed and cannot be considered robust. In this work, thanks to the recent acquisition of IRMS technology, new modern and robust applications of δ13C for viticulture are proposed. This includes the use of the analysis to make parcel separations at harvesting, the possibility to increase the precision of hydric stress cartography and the potential cost reduction when compared with Scholander pressure bomb analysis.

Alternative methods to evaluate the pinking susceptibility of white wines: derivative spectroscopy and ciel*a*b* colour analysis

Pinking describes the appearance of a salmon-red blush in white bottled wines produced exclusively from white grape varieties. It is understood as an undesirable chromatic phenomenon by both wine consumers and the industry. Nowadays, there are no treatments to fully reverse pinking once it occurs. Partial reversion has been shown after exposure of pinked wine to ultraviolet (UV) light.

Effects of water deficit on secondary metabolites in grapes and wines

In this video recording of the IVES science meeting 2021, Simone D. Castellarin (University of British Columbia, Wine Research Center, Wine Research Centre, Vancouver, Canada) speaks about the effects of water deficit on secondary metabolites in grapes and wines. This presentation is based on an original article accessible for free on OENO One.

Soil quality in Beaujolais vineyard. Importance of pedology and cultural practices

A pedological study was carried out from 2009 to 2017 in Beaujolais vineyard, to improve physical and chemical knowledge of soils. It was completed in 2016 and 2017 by the current study, dealing with microbial aspects, in order to build a reference frame for improved advice in soil management. Microbial biomass was measured on representative plots of the six most common soil types identified in Beaujolais and, for each soil type, on plots with different levels of the main impacting parameters: total organic carbon, pH, cation exchange capacity, extractable copper. A total of 59 soil samples were collected. Confirming the results of various trials carried out in Beaujolais over the past 20 years, the results of the present study showed that the soils were still alive, but exhibited a large variability of biological parameters, which appeared dependant on both pedological and anthropic factors. Therefore, a good interpretation of biological parameters and advice for vine growers must rely on a pedologically-based referential with differentiated main driving factors. For example, the control of pH is of primary importance in granitic soils and in no way organic matter addition can improve soil quality if pH is too low. Conversely, in calcareous soils, biological parameters are more directly affected by direct or indirect (cover crops for example) inputs of organic matter. The use of biological parameters, such as microbial biomass, is of great potential value to improve advice on agro-viticultural practices (soil management, fertilization, liming, etc.), basis of a sustainable wine production on fragile soils.