Terroir 2010 banner
IVES 9 IVES Conference Series 9 la caratterizzazione dell’areale viticolo “terre alte di brisighella”: aspetti metodologici e primi risultati

la caratterizzazione dell’areale viticolo “terre alte di brisighella”: aspetti metodologici e primi risultati

Abstract

La zonazione viticola rappresenta un importante strumento di indagine per valutare e interpretare le potenzialità produttive e qualitative di un territorio. Con l’obiettivo di studiare come l’ambiente influisca sulla qualità dell’uva nell’areale di Brisighella, sono stati monitorati, nelle annate 2007, 2008 e 2009, 14 vigneti per la varietà Albana e 38 per la varietà Sangiovese, rappresentativi di una area vitata di circa 1000 ha. Dallo studio è stato possibile ricavare i dati relativi ai parametri meteorologici e pedologici, con la produzione di 22 profili con relative analisi dei suoli; per ciascun vigneto sono stati effettuati rilievi agronomici e analisi dei parametri analitici sulle uve.

English version: Zoning is an important instrument to evaluate and interpret the potential production and quality of a terroir. As a result of the studies of how the environment can influence grape quality in the area of Brisighella, 14 vineyards of Albana and 38 of Sangiovese, representatives of at least 1000 ha of planted surface, were monitorized during 2007, 2008, 2009. Thanks to this study it has been possible to obtain metereological data and soil parameters, with the production of 22 profiles and specific soil analysis. For each vineyards agronomic data and analytical parameters on grapes were carried out.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

L. Valenti (1), I. Ghiglieno (1), A. Gozzini (1), G. Nigro (2), Raimondi (3), G. Antolini(4)

(1) Università degli Studi di Milano, Facoltà di Agraria, Dipartimento di Produzione Vegetale, via Celoria 2, 20133. Milano
(2) CRPV, Centro ricerche produzioni vegetali, via Tebano 45, 48018 Faenza (RA)
(3) I.TER Soc. Cop., via Brugnoli 11, Bologna
(4) ARPA Emilia-Romagna, Servizio IdroMeteoClima, viale Silvani 6, 40122 Bologna

Contact the author

Keywords

Production parameters – Analytical parameters – Climate maps – Geological and soil characteristics – Vocational area

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

From local classification to regional zoning-the use of a geographic information system (GIS) in Franconia / Germany. Part 1: specific GIS applications in viticulture

En vue d’une production économique de qualités des raisins optimales une connaissance des informations les plus différentes est importante. Les nouvelles technologies, telles qu’un SIG permettent de réunir les informations sur le terrain, la nature du sol, le danger d’érosion, le climat, la végétation, l’hydrographie, l’apparition de nuisible et de maladies, etc. Sur la base de cartes topographiques un SIG permet une vaste analyse, une appréciation des rapports complexes ainsi qu’une représentation cartographique. Sur la base de modélisations en trois dimensions du terrain avec le SIG, les ensembles de données saisies ainsi que leur classification au niveau local peuvent être utilisés dans la production de zonages régionaux.

New tools for a visual analysis of vineyard landscapes?

A vineyard landscape is above all an area observed by someone, that is to say a physical entity perceved and represented by this person.

INTEGRAPE guidelines and tools: an effort of COST Action CA17111

INTEGRAPE was a European interdisciplinary network for “data integration to maximize the power of omics for grapevine improvement” (CA17111, https://integrape.eu/), funded by the European COST Association from September 2018 to 2022. This Action successfully developed guidelines and tools for data management and promoted the best practices in grapevine omics studies with a holistic future vision of: “Imagine having all data on grapevine accessible in a single place”.

UNRAVELING THE CHEMICAL MECHANISM OF MND FORMATION IN RED WINE DURING BOTTLE AGING : IDENTIFICATION OF A NEW GLUCOSYLATED HYDROXYKETONE PRO-PRECURSOR

During bottle aging, the development of wine aroma through low and gradual oxygen exposure is often positive in red wines, but can be unfavorable in many cases, resulting in a rapid loss of fresh, fruity flavors. Prematurely aged wines are marked by intense prune and fig aromatic nuances that dominate the desirable bouquet achieved through aging (Pons et al., 2013). This aromatic defect, in part, is caused by the presence of 3-methyl-2,4-nonanedione (MND). MND content was shown to be lower in nonoxidized red wines and higher in oxidized red wines, which systematically exceeds the odor detection threshold (62 ng/L).

Impact of geographical location on the phenolic profile of minority varieties grown in Spain. II: red grapevines

Because terroir and cultivar are drivers of wine quality, is essential to investigate theirs effects on polyphenolic profile before promoting the implantation of a red minority variety in a specific area. This work, included in MINORVIN project, focuses in the polyphenolic profile of 7 red grapevines minority varieties of Vitis vinifera L. (Morate, Sanguina, Santafe, Terriza Tinta Jeromo Tortozona Tinta) and Tempranillo) from six typical viticulture Spanish areas: Aragón (A1), Cataluña (A2), Castilla la Mancha (A3), Castilla –León (A4), Madrid (A5) and Navarra (A6) of 2020 season. Polyphenolic substances were extracted from grapes. 35 compounds were identified and quantified (mg subtance/kg fresh berry) by HPLC and grouped in anthocyanins (ANT) flavanols (FLAVA), flavonols (FLAVO), hydroxycinnamic (AH), benzoic (BA) acids and stilbenes (ST). Antioxidant activity (AA, mmol TE /g fresh berry) was determined by DPPH method. The results were submitted to a two-way ANOVA to investigate the influence of variety, area and their interaction for each polyphenolic family and cluster analysis was used to construct hierarchical dendrograms, searching the natural groupings among the samples. Sanguina (A3) had the most of total polyphenols while Tempranillo (A5) those of ANT. Sanguina (A2) and (A3) reached the highest values of FLAVO, FLAVA and AA. These two last samples had also the maximum of AA. The effect cultivar and area were significant for all polyphenolic families analyzed. A high variability due to variety (>50%) was observed in FLAVA and the maximum value of variability due to growing area was detected in AA (86.41%), ANT and FLAVO (51%); the interaction variety*zone was significant only for ANT, FLAVO, EST and AA. Finally, dendrograms presented five cluster: i) Sanguina (A2); ii) Sanguina (A3); iii) Tempranillo (A5); iv) Tempranillo (A3); Terriza (A3,A5), Morate (A5,A6); v) Santafé (A1,A6); Tortozona tinta (A1,A3,A6); Tinta Jeromo (A3,A4).