Terroir 2010 banner
IVES 9 IVES Conference Series 9 la caratterizzazione dell’areale viticolo “terre alte di brisighella”: aspetti metodologici e primi risultati

la caratterizzazione dell’areale viticolo “terre alte di brisighella”: aspetti metodologici e primi risultati

Abstract

La zonazione viticola rappresenta un importante strumento di indagine per valutare e interpretare le potenzialità produttive e qualitative di un territorio. Con l’obiettivo di studiare come l’ambiente influisca sulla qualità dell’uva nell’areale di Brisighella, sono stati monitorati, nelle annate 2007, 2008 e 2009, 14 vigneti per la varietà Albana e 38 per la varietà Sangiovese, rappresentativi di una area vitata di circa 1000 ha. Dallo studio è stato possibile ricavare i dati relativi ai parametri meteorologici e pedologici, con la produzione di 22 profili con relative analisi dei suoli; per ciascun vigneto sono stati effettuati rilievi agronomici e analisi dei parametri analitici sulle uve.

English version: Zoning is an important instrument to evaluate and interpret the potential production and quality of a terroir. As a result of the studies of how the environment can influence grape quality in the area of Brisighella, 14 vineyards of Albana and 38 of Sangiovese, representatives of at least 1000 ha of planted surface, were monitorized during 2007, 2008, 2009. Thanks to this study it has been possible to obtain metereological data and soil parameters, with the production of 22 profiles and specific soil analysis. For each vineyards agronomic data and analytical parameters on grapes were carried out.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

L. Valenti (1), I. Ghiglieno (1), A. Gozzini (1), G. Nigro (2), Raimondi (3), G. Antolini(4)

(1) Università degli Studi di Milano, Facoltà di Agraria, Dipartimento di Produzione Vegetale, via Celoria 2, 20133. Milano
(2) CRPV, Centro ricerche produzioni vegetali, via Tebano 45, 48018 Faenza (RA)
(3) I.TER Soc. Cop., via Brugnoli 11, Bologna
(4) ARPA Emilia-Romagna, Servizio IdroMeteoClima, viale Silvani 6, 40122 Bologna

Contact the author

Keywords

Production parameters – Analytical parameters – Climate maps – Geological and soil characteristics – Vocational area

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Volatile compounds of base wines for the production of Lessini Durello sparkling wine

AIM Durello is a sparkling wine produced in the Lessini mountains near Verona. The wine is made from Durella grapes, a native white grape variety with a particularly high acidity. In spite of the small production area (375 ha for only 35 producers), there is a growing interest in this product. However, little is known about the aromatic profiles of these wines. The aim of this work was to characterize the aroma profile of Durella base wines suitable for the production of Lessini Durello sparkling wine. METHODS 14 base wines from Durella grapesfrom different producers were used for this study. Solid Phase Microextraction (SPME) and Solid Phase Extraction (SPE) sampling techniques coupled to GC-MS analysis allowed to identify and quantify a total of 62 volatile compounds. RESULTS Durello base wines showed relatively high levels of vitispirane, ß-damascenone, ß-citronellol and esters.

The sensitivity to ABA affects the cross-talk between scion/rootstock in tolerant grapevines to drought stress

Drought caused by climate change has a dramatic incidence on the vineyard. Despite employing specific rootstocks tolerant to drought like 110 Richter, the vineyard continues to experience various losses, revealing the importance of the scion cultivar in the adaptation to drought stress. In this regard, Merlot, a widely cultivated grapevine, exhibited reduced drought tolerance compared to less cultivated varieties like Callet, a local cultivar originating from the Balearic Islands that demonstrated greater resilience to drought. Therefore, understanding the drought stress response in both cultivars and the cross-talk between scion and rootstock is key to unveiling possible differences that could affect to the adaptation to drought in vineyard.

Phenotyping bud break and trafficking of dormant buds from grafted vine

In grapevine, phenology from bud break to berry maturation, depends on temperature and water availability. Increases in average temperatures accelerates initiation of bud break, exposing newly formed shoots to detrimental environmental stresses. It is therefore essential to identify genotypes that could delay phenology in order to adapt to the environment. The use of different rootstocks has been applied to change scion’s characteristics, to adapt and resist to abiotic and biotic stresses[1].

The rootstock, the neglected player in the scion transpiration even during the night

Water is the main limiting factor for yield in viticulture. Improving drought adaptation in viticulture will be an increasingly important issue under climate change. Genetic variability of water deficit responses in grapevine partly results from the rootstocks, making them an attractive and relevant mean to achieve adaptation without changing the scion genotype. The objective of this work was to characterize the rootstock effect on the diurnal regulation of scion transpiration. A large panel of 55 commercial genotypes were grafted onto Cabernet Sauvignon. Three biological repetitions per genotype were analyzed. Potted plants were phenotyped on a greenhouse balance platform capable of assessing real-time water use and maintaining a targeted water deficit intensity. After a 10 days well-watered baseline period, an increasing water deficit was applied for 10 days, followed by a stable water deficit stress for 7 days. Pruning weight, root and aerial dry weight and transpiration were recorded and the experiment was repeated during two years. Transpiration efficiency (ratio between aerial biomass and transpiration) was calculated and δ13C was measured in leaves for the baseline and stable water deficit periods. A large genetic variability was observed within the panel. The rootstock had a significant impact on nocturnal transpiration which was also strongly and positively correlated with maximum daytime transpiration. The correlations with growth and water use efficiency related traits will be discussed. Transpiration data were also related with VPD and soil water content demonstrating the influence of environmental conditions on transpiration. These results highlighted the role of the rootstock in modulating water deficit responses and give insights for rootstock breeding programs aimed at identifying drought tolerant rootstocks. It was also helpful to better define the mechanisms on which the drought tolerance in grapevine rootstocks is based on.