Terroir 2010 banner
IVES 9 IVES Conference Series 9 Influenza delle componenti climatiche e pedologiche sulla variabilità dei contenuti polifenolici in alcuni ambienti vitati della DOCG Sagrantino di Montefalco

Influenza delle componenti climatiche e pedologiche sulla variabilità dei contenuti polifenolici in alcuni ambienti vitati della DOCG Sagrantino di Montefalco

Abstract

Obiettivo del progetto è la valutazione dell’influenza climatica e pedologica dell’areale di Montefalco sul vitigno Sagrantino, ponendo particolare attenzione alla componente polifenolica e antocianica. Sono stati quindi messi a confronto, a partire dal 2001 fino al 2008, sei differenti zone tutte situate all’interno dell’areale DOCG Sagrantino di Montefalco; per ciascun vigneto alla vendemmia sono state effettuate analisi sui parametri analitici e sul contenuto polifenolico e antocianico delle uve. Ognuna delle sei zone è inoltre stata caratterizzata dal punto di vista pedoclimatico, valutando l’influenza del clima e della tipologia di suolo sui parametri analitici presi in considerazione.

English version: The reason of the present project is the evaluation of climatic and pedologic influence of the Montefalco area on the cultivar Sagrantino, with particular attention to the anthocyanic and polyphenolic components. Six different vineyards, localized in the DOGC “Sagrantino di Montefalco” area, were under observation from 2001 to 2008; for each vineyard, analysis of analytical parameter and polyphenolic and anthocyanic content of grapes were done at the vintage. All areas have been also characterized for pedoclimatic aspects, studying the relationship between clima and soil together with analytical parameters.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

Valenti L. (1), Mattivi F. (2), Compagnoni M. (3), Mariani L. (1), Dell’Orto M.(1), Ghiglieno I. (1)

(1) Università degli studi di Milano, Facoltà di Agraria, Dipartimento di Produzione Vegetale, Via Celoria, 2 20133 Milano
(2) IstitutoAgrario di SanMichele all’Adige (IASMA), Centro Sperimentale, Dipartimento. Laboratorio Analisi e Ricerche, via E.Mach 2, 38010 San Michele all’Adige
(3) Studio di Geologia Applicata, via G. Randaccio 21, 25128 Brescia

Keywords

Polyphenolic components – Climate analysis – Pedologic analysis – Bioclimatic indices

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Botrytis cinerea is a fungus that causes common infection in grapes and other fruits. In winemaking, its presence can be both considered desirable in the case of noble rot infection or undesirable when grey rot is developed. This fungus produces an extracellular enzyme known as laccase which is able to cause oxidation of phenolic compounds present in must and wine, causing most of the times a decrease in its quality and problems during the winemaking process [1]. Material and methods: Three B. cinerea strains (B0510, VA612 and RM344) were selected and grown in a liquid medium adapted from one previously described [2]. The enzyme was isolated by tangential ultrafiltration of the culture medium using a QuixStand system equipped with a 30 KDa filtration membrane.

Riesling as a model to irrigate white wine grape varieties in arid climates

Regulated deficit irrigation (RDI) is a common viticultural practice for wine grape production. In addition to the potential improvement of water use efficiency, the adoption of this technique favors smaller canopies with higher levels of fruit sun exposure, enhancing quality attributes associated with red wine grapes such as smaller berries with higher tannins and anthocyanins. However, these quality attributes do not necessarily transfer to white wine grapes. The goal of this project was to assess whether partial rootzone drying (PRD) is more suited than RDI to grow high-end white wine grapes in arid climates, especially aromatic varieties, using Riesling as a model.

Development of a new method to understand headspace aroma distribution and explore the pre-sensory level in perceptive interactions involved in red wine fruity aroma expression

A part, at least, of red wines fruity expression may be explained by perceptive interactions involving particularly various substituted ethyl esters and acetates present at concentration far below their olfactory threshold, specifically thanks to synergistic effects. Wine sensory perception is directly linked to the stimulation of the taster at the level of olfactory epithelium by volatiles. These compounds are liberated from the matrix to the atmosphere, and will then be smelt. From a physico-chemical point of view, these volatiles ability to be released may be evaluated by their partition coefficients, which correspond to the volatile concentration ratio between the liquid and gas phase. Our goal is, through these coefficients determination, to assess if volatile matrix composition is able to impact the volatility of some compounds, and then explain sensory perception, i.eto evaluate what is called the pre-sensorial level impact.

Drought tolerance assessment and differentiation of grapevine cultivars using physiological metrics: insights from field studies

This study aimed to validate a protocol and compare metrics for evaluating drought tolerance in two Vitis vinifera grapevine cultivars under field conditions. Various metrics were calculated to represent the physiological responses of plants to progressive water deficit. Data were collected from Sauvignon Blanc and Chardonnay plants subjected to three irrigation levels during the 2022-2023 season, along with data from three previous seasons. Hydro-escape areas were used to assess the plant’s ability to reduce water potential with decreasing soil water availability.

Different oxygen and sulphur dioxide concentrations in ‘Sauvignon blanc’ must: effect on the composition of the must and wine

The effects of different oxygen and sulphur dioxide additions to South African ‘Sauvignon blanc’ musts were investigated. Oxygen addition without SO2 protection led to lower levels of certain volatile thiols in the wines, with a corresponding decrease in certain phenols and glutathione concentrations.