Terroir 2010 banner
IVES 9 IVES Conference Series 9 Influenza delle componenti climatiche e pedologiche sulla variabilità dei contenuti polifenolici in alcuni ambienti vitati della DOCG Sagrantino di Montefalco

Influenza delle componenti climatiche e pedologiche sulla variabilità dei contenuti polifenolici in alcuni ambienti vitati della DOCG Sagrantino di Montefalco

Abstract

Obiettivo del progetto è la valutazione dell’influenza climatica e pedologica dell’areale di Montefalco sul vitigno Sagrantino, ponendo particolare attenzione alla componente polifenolica e antocianica. Sono stati quindi messi a confronto, a partire dal 2001 fino al 2008, sei differenti zone tutte situate all’interno dell’areale DOCG Sagrantino di Montefalco; per ciascun vigneto alla vendemmia sono state effettuate analisi sui parametri analitici e sul contenuto polifenolico e antocianico delle uve. Ognuna delle sei zone è inoltre stata caratterizzata dal punto di vista pedoclimatico, valutando l’influenza del clima e della tipologia di suolo sui parametri analitici presi in considerazione.

English version: The reason of the present project is the evaluation of climatic and pedologic influence of the Montefalco area on the cultivar Sagrantino, with particular attention to the anthocyanic and polyphenolic components. Six different vineyards, localized in the DOGC “Sagrantino di Montefalco” area, were under observation from 2001 to 2008; for each vineyard, analysis of analytical parameter and polyphenolic and anthocyanic content of grapes were done at the vintage. All areas have been also characterized for pedoclimatic aspects, studying the relationship between clima and soil together with analytical parameters.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

Valenti L. (1), Mattivi F. (2), Compagnoni M. (3), Mariani L. (1), Dell’Orto M.(1), Ghiglieno I. (1)

(1) Università degli studi di Milano, Facoltà di Agraria, Dipartimento di Produzione Vegetale, Via Celoria, 2 20133 Milano
(2) IstitutoAgrario di SanMichele all’Adige (IASMA), Centro Sperimentale, Dipartimento. Laboratorio Analisi e Ricerche, via E.Mach 2, 38010 San Michele all’Adige
(3) Studio di Geologia Applicata, via G. Randaccio 21, 25128 Brescia

Keywords

Polyphenolic components – Climate analysis – Pedologic analysis – Bioclimatic indices

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Revealing the Barossa zone sub-divisions through sensory and chemical analysis of Shiraz wine

The Barossa zone is arguably one of the most well-recognised wine producing regions in Australia and internationally; known mainly for the production of its distinct Shiraz wines. However, within the broad Barossa geographical delimitation, a variation in terroir can be perceived and is expressed as sensorial and chemical profile differences between wines. This study aimed to explore the sub-division classification across the Barossa region using chemical and sensory measurements. Shiraz grapes from 4 different vintages and different vineyards across the Barossa (2018, n = 69; 2019, n = 72; 2020, n = 79; 2021, n = 64) were harvested and made using a standardised small lot winemaking procedure. The analysis involved a sensory descriptive analysis with a highly trained panel and chemical measurement including basic chemistry (e.g. pH, TA, alcohol content, total SO2), phenolic composition, volatile compounds, metals, proline, and polysaccharides. The datasets were combined and analysed through an unsupervised, clustering analysis. Firstly, each vintage was considered separately to investigate any vintage to vintage variation. The datasets were then combined and analysed as a whole. The number of sub-divisions based on the measurements were identified and characterised with their sensory and chemical profile and some consistencies were seen between the vintages. Preliminary analysis of the sensory results showed that in most vintages, two major groups could be identified characterised with one group showing a fruit-forward profile and another displaying savoury and cooked vegetables characters. The exploration of distinct profiles arising from the Barossa wine producing region will provide producers with valuable information about the regional potential of their wine assisting with tools to increase their target market and reputation. This study will also provide a robust and comprehensive basis to determine the distinctive terroir characteristics which exist within the Barossa wine producing region.

How do different oak treatment affect the sensory composition of Chenin blanc wines over time?

Wooden barrels have been the preferred method for oak maturation for wines, but the use of alternative oak products, such as staves and oak chips have increased in South Africa due to lower production costs. This study investigated the effect of different oak products used during fermentation and ageing on the sensory profile, degree of liking and perceived quality of a South African Chenin blanc wine. The different wine treatments included an unoaked tank control wine, wines matured in 5th fill barrels, wines matured in new barrels from three different cooperages, and wines matured in 5th fill barrels with stave inserts from two different cooperages.

Sensory analysis in oenology: the role of methodological differences in expert panel evaluations

Sensory analysis is an essential component of oenology, offering valuable insights into wine quality that influence decision-making in viticulture and winemaking.

Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Appliance of climate projections for climate change study in Serbian vineyard regions

Climate projections considered here are for two periods in the future throughout two IPCC scenarios: 2001 – 2030 (A1B) and 2071 – 2100 (A2) obtained using Coupled Regional Climate