Terroir 2010 banner
IVES 9 IVES Conference Series 9 Development of a GRASS-GIS application for the characterization of vineyards in the province of Trento

Development of a GRASS-GIS application for the characterization of vineyards in the province of Trento

Abstract

The physical factors that influence the grape ripening include elevation, slope, aspect, potential global radiation, sun hours and soil type of the vineyards.

Many of these features could be derived from Digital Elevation Models (DEM), using Geographic Information Systems (GIS). There are several commercial and open-source GIS-applications available and also the geodata are continuously increasing in amount, spatial resolution, frequency, but their use remains matter of specialists!
In the present work we developed an easy to use and open-source application, accessible on the web, exploiting the functionalities of GRASS-GIS in the analysis of geospatial data and PostgreSQL/PostGIS as geodatabase, allowing a rapid characterisation of the sites.

Each vineyard is identified through the compilation of a simple form on the web. The required fields are the cadastral codes of the zone as well as of the parcels, which composes it. After sending the request an automatic procedure starts, which extracts the geometry of the vineyard from the vector cadastral map of the Autonomous Province of Trento, provided by the PAT – S.I.A.T. office (www.siat.provincia.tn.it). The Digital Terrain Model at 10 m resolution (PAT –S.I.A.T.) was used in the open source GIS software GRASS 6.4 to derive the slope and aspect maps (r.slope.aspect function), whereas the cumulated global radiation, and mean insolation (sun hours) during the vegetative period (1st April – 31th October) were calculated at 20 m resolution using the r.sun command. In the following step GRASS GIS performs the query of all the available raster maps (digital elevation model, slope, aspect, etc.) within the limits of the vineyard and returns the correspondent mean values.

Moreover three bioclimatic indices (Winkler, Huglin, and Gladstones) are automatically calculated, based on modelling of 10-years of meteorological data from 64 weather station distributed over the Province, and the elevation of the site.

The data are automatically stored in the ‘vineyards’ table of the database and result immediately available on the web. The procedure is written in php and can be adapted to every region and purpose, modifying the vector and the raster layers. The input of the cadastral data can occur also by means of a comma separated values (.csv) sheet, allowing the characterisation of hundreds of vineyards in few minutes.

Related articles…

Vitiforestry as innovative heritage. Adaptive conservation of historical wine-growing landscapes as response to XXI century’s challenges.

Traditional agricultural and agro-pastoral systems (prior to industrial revolution) often have the characteristic of being multiple systems, in which multiple crops are hosted simultaneously on the same plot. currently research suggests to study more in depth the potential of multiple agricultural systems in order to detect those characteristics of multiple agrarian systems that could allow modern viticulture to adapt to the challenges posed by climate change: rising temperatures with impacts on the phenological cycle of the vine, resurgence of plant deseases, extreme soil washout phenomena and hail storms, among others.

What triggers the decision to ripen 

The decision for grape berries to ripen involves a complex interplay of genetic regulation and environmental cues. This review explores the molecular mechanisms underlying the transition from vegetative growth to ripening, focusing on transcriptomic studies and the role of the NAC gene family. Transcriptomic analyses reveal a significant rearrangement of gene expression patterns during this transition, with up-regulation of ripening-related genes and down-regulation of those associated with vegetative growth. A molecular phenology scale providing a high-precision map of berry transcriptomic development, indicates that key molecular changes occur well before the onset of ripening.

Grapevine nitrogen retrieval by hyperspectral sensing at the leaf and canopy level

Grapevine nitrogen (N) monitoring is essential for efficient N management plans that optimize fruit yield and quality while reducing fertilizer costs and the risk of environmental contamination. Unlike traditional vegetative-tissue sampling methods, remote sensing technologies, including hyperspectral imaging, have the potential to allow monitoring of the N status of entire vineyards at a per-vine resolution. However, differential N partitioning, variable spectral properties, and complex canopy structures hinder the development of a robust N retrieval algorithm. The present study aimed to establish a solid understanding of vine spectroscopic response at leaf and canopy levels by evaluating the different nitrogen retrieval approaches, including the radiative transfer model.

Système de Classification Climatique Multicritères (CCM) Géoviticole

Le travail concerne en premier la méthodologie de caractérisation du climat des vignobles, à l’échelle du macroclimat des régions viticoles du monde (géoviticulture). Trois indices climatiques viticoles synthétiques

Generation of radicals in wine by cavitation and study of their interaction with metals, phenols and carboxylic acids

High-power ultrasounds have been related to an accelerated aging of wines, an effect that has been associated to the formation of radical species caused by the cavitation phenomenon [1]. This phenomenon consists of the formation of bubbles in the liquid medium that, when they collapse, cause high-pressure hot spots and temperatures of up to 4800 k [2], notably increasing the reactivity in the medium.