Terroir 2020 banner
IVES 9 IVES Conference Series 9 Viticulture and climate: from global to local

Viticulture and climate: from global to local

Abstract

Aims: This review aims to (1) present the multiple interests of studying and depicting and climate spatial variability for vitivinicultural terroirs study; (2) explain the factors that affect climate spatial variability according to the spatial scale considered and (3) provide guidelines for climate zoning considering challenges linked to each methodology considered.

Methods and Results: Scientific contributions of the 12 Terroir Conferences proceedings since 1996 have been reviewed together with Vitis-Vea, Oeno One, ASEV, ScienceDirect, SpringerLink and Wiley Online Library data bases with various keywords combination of “Climate”, “Spatial analysis”, “Wine”, “Viticulture”, “Area”, “Scale”, “Terroir” and “Zoning”, including English, Italian and Spanish languages. This literature review led to the classification of climate spatial analysis related studies according to the spatial extent, scale, source of data, spatialization method and indices used to depict the spatial structure of climate. To illustrate the scale issue for climate spatial analysis of wine growing terroirs, a comparison of spatial structure of climate depicted by either large scale data (Worldclim v2.0and CRU4.2TS), point data (weather stations) and spatial interpolation of local weather stations was performed in Bordeaux (2001-2005 period) wine region. It shows the limitations of coarse resolution (macroclimate scale) data to depict mesoscale data.

Conclusions: 

The climate spatial variability of wine producing regions have been widely documented, yet not exhaustively. However, climate indices and period are not standardized which makes it difficult to compare the climate of terroirs based on the existing literature. Analysing spatial structure might lead to different conclusions according to the source of the data, and thus special care should be provided to the methods, scale and uncertainties associated to spatial data.

Significance and Impact of the Study: This study provides in a nutshell an overview of climate analysis for terroir studies that could be useful for students, winegrowers and researchers interested in climate spatial analysis.

DOI:

Publication date: March 16, 2021

Issue: Terroir 2020

Type: Video

Authors

Benjamin Bois1,2*

1Centre de Recherches de Climatologie, UMR 6282 CNRS/UB Biogéosciences, Univ. Bourgogne-Franche-Comté, 6 bd Gabriel 21000 Dijon. France
2IUVV, Univ. Bourgogne-Franche-Comté, 1 rue Claude Ladrey, 21000 DIJON, France

Contact the author

Keywords

Climatespatial analysis, spatial scale, viticulture, terroir

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

What practices in the vineyard lead to the production of wines that consistently win medals?

High quality wines start in the vineyard however little is known about the role vineyard management practices play in this quality outcome. Gold medals and well-known regionality increase consumer preference for purchasing a wine. An increase in the former will certainly also drive an increase in the latter and therefore practices in production that consistently lead to gold medal winning wines will improve both the marketability of the region and its products. It is argued that vinification is the main driver of wine quality and in fact, the presence of some oak compounds is a well-known consumer and expert mark of quality. However, only select wines are vinified in oak and therefore the original grape quality at the winery door must in fact drive all further downstream vinification decisions.

Applicability of grape native yeasts to enhance regional wine typicity

The universalization in wine production has been restricting the imprint of terroir in regional wines, resulting in loss of typicity. Microbes are the main driving force in wine production, conducting fermentation and originating a myriad of metabolites that underly wine aroma. Grape berries harbor an ecological niche composed of filamentous fungi, yeasts and bacteria, which are influenced by the ripening stage, cultivar and region. The research project GrapeMicrobiota gathers a consortium from University of Zaragoza, University of Minho and University of Tours and aims at the isolation of native yeast strains from berries of the wine region Douro, UNESCO World Heritage, towards the production of wines that stand out in the market for their authenticity and for reflecting their region of origin in their aroma.

Effects of organic mulches on the soil environment and yield of grapevine

Farming management practices aiming at conserving soil moisture have been developed in arid and semiarid-areas facing water scarcity problems. Organic mulching is an effective method to manipulate the crop-growing microclimate increasing crop yield by controlling soil temperature, and retaining soil moisture by reducing soil evaporation. In this sense, the effectiveness of different organic mulching materials (straw mulch and grapevine pruning debris) applied within the row of a vineyard was evaluated on the soil and on the vine in a Tempranillo vineyard located in La Rioja (Spain). Organic mulches were compared with a traditional bare soil management technique (based on the use of herbicides to avoid weed incidence). Mulching coverages favourably influenced the soil water retention throughout all the grapevine vegetative cycle. However, the soil-moisture variation was not the same under different mulching materials, being the straw mulch (SM) the one that retained more water in comparison with grapevine pruning debris (GPD) based-cover. The changes of soil moisture in the upper surface layer (0–10 cm) were highly dynamic, probably due to water vapour fluxes across the soil-atmospheric interface. However, both, SM and GPD reduced these fluctuations as compared with bare soils. A similar trend occurred with soil temperature. Both organic mulches altered soil temperature in comparison with bare soil by reducing soil temperature in summer and raising it in winter. Moreover, the same buffering effect for the temperature on the covered soil also remains in the deeper layers. To conclude, we could see that organic mulching had a positive impact on soil-moisture storage and soil temperature and the extent of this effect depends on the type of mulching materials. These changes led to higher rates of photosynthesis and stomatal conductivity compared to bare soils, also favouring crop growth and grape yields.

Multivariate data analysis applied on Fourier Transform Infrared spectroscopy for the prediction of tannins levels during red wine fermentation

Red wine is a beverage with one of the highest polyphenol concentration, which are extracted during the maceration step of the winemaking process.

Characterization of commercial enological tannins and its effect on human saliva diffusion

Commercial oenological tannins (TECs) are widely used in the wine industry. TECs are rich in condensed tannins, hydrolyzable tannins or a mixture of both. Wine grapes are a important source of proanthocyanidins or condensed tannins while oak wood possess a high concentration of hydrolyzable tannins (Obreque-Slier et al., 2009). TECs contribute with the antioxidant capacity of wine, catalyze oxide-reduction reactions and participate in the removal of sulfur compounds and metals.