Terroir 2020 banner
IVES 9 IVES Conference Series 9 Viticulture and climate: from global to local

Viticulture and climate: from global to local

Abstract

Aims: This review aims to (1) present the multiple interests of studying and depicting and climate spatial variability for vitivinicultural terroirs study; (2) explain the factors that affect climate spatial variability according to the spatial scale considered and (3) provide guidelines for climate zoning considering challenges linked to each methodology considered.

Methods and Results: Scientific contributions of the 12 Terroir Conferences proceedings since 1996 have been reviewed together with Vitis-Vea, Oeno One, ASEV, ScienceDirect, SpringerLink and Wiley Online Library data bases with various keywords combination of “Climate”, “Spatial analysis”, “Wine”, “Viticulture”, “Area”, “Scale”, “Terroir” and “Zoning”, including English, Italian and Spanish languages. This literature review led to the classification of climate spatial analysis related studies according to the spatial extent, scale, source of data, spatialization method and indices used to depict the spatial structure of climate. To illustrate the scale issue for climate spatial analysis of wine growing terroirs, a comparison of spatial structure of climate depicted by either large scale data (Worldclim v2.0and CRU4.2TS), point data (weather stations) and spatial interpolation of local weather stations was performed in Bordeaux (2001-2005 period) wine region. It shows the limitations of coarse resolution (macroclimate scale) data to depict mesoscale data.

Conclusions: 

The climate spatial variability of wine producing regions have been widely documented, yet not exhaustively. However, climate indices and period are not standardized which makes it difficult to compare the climate of terroirs based on the existing literature. Analysing spatial structure might lead to different conclusions according to the source of the data, and thus special care should be provided to the methods, scale and uncertainties associated to spatial data.

Significance and Impact of the Study: This study provides in a nutshell an overview of climate analysis for terroir studies that could be useful for students, winegrowers and researchers interested in climate spatial analysis.

DOI:

Publication date: March 16, 2021

Issue: Terroir 2020

Type: Video

Authors

Benjamin Bois1,2*

1Centre de Recherches de Climatologie, UMR 6282 CNRS/UB Biogéosciences, Univ. Bourgogne-Franche-Comté, 6 bd Gabriel 21000 Dijon. France
2IUVV, Univ. Bourgogne-Franche-Comté, 1 rue Claude Ladrey, 21000 DIJON, France

Contact the author

Keywords

Climatespatial analysis, spatial scale, viticulture, terroir

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Insight on Lugana flavor with a new LC-MS method for the detection of polyfunctional thiols

The analysis of polyfunctional thiols in wine is challenging due to their low abundance and instability within a complex matrix. However, volatile thiols are highly aroma-active, making their accurate quantification in wine at low concentrations crucial [1].

Impact on leaf morphology of Vitis vinifera L. cvs Riesling and Cabernet Sauvignon under Free Air Carbon dioxide Enrichment (FACE)

Atmospheric carbon dioxide (CO2) concentration has continuously increased since pre-industrial times from 280 ppm in 1750, and is predicted to exceed 700 ppm by the end of 21st century. For most of C3 plant species elevated CO2 (eCO2) improve photosynthetic apparatus results in an increased plant biomass production. To investigate the effects of eCO2 on morphological leaf characteristics the two Vitis vinifera L. cultivars, Riesling and Cabernet Sauvignon, grown in the Geisenheim VineyardFACE (Free Air Carbon dioxide Enrichment) system were used. The FACE site is located at Geisenheim University (49° 59′ N, 7° 57′ E, 94 m above sea level), Germany and was implemented in 2014 comparing future atmospheric CO2-concentrations (eCO2, predicted for the mid-21st century) with current ambient CO2-conditions (aCO2). Experiments were conducted under rain-fed conditions for two consecutive years (2015 and 2016). Six leaves per repetition of the CO2 treatment were sampled in the field and immediately fixed in a FAA solution (ethanol, H2O, formaldehyde and glacial acetic acid). After 24 h leaf samples were transferred and stored in an ethanol solution. Subsequently, leaf tissue was dehydrated using ethanol series and embedded in paraffin. By using a rotary microtomesections of 5 µm were prepared and fixed on microscopic slides. Subsequent the samples were stained using consecutive staining and washing solutions. Afterwards pictures of the leaf cross-sections were taken using a light microscope and consecutive measurements were conducted with an open source image software. Differences found in leaf cross-sections of the two CO2 treatments were detected for the palisade parenchyma. Leaf thickness, upper and lower epidermis and spongy parenchyma remained less affected under eCO2 conditions. The observed results within grapevine leaf tissues can provide first insights to seasonal adaptation strategies of grapevines under future elevated CO2 concentrations.

The plantation frame as a measure of adaptation to climate change

The mechanization of vineyard work originally led to a reduction in planting densities due to the lack of machinery adapted to the vineyard. The current availability of specific machinery makes it possible to establish higher planting densities. In this work, three planting densities (1.40×0.80 m, 1.80×1 m and 2.20×1.20 m, corresponding to 8928, 5555 and 3787 plants/ha respectively) were studied with four varieties autochthonous of Galicia (northwestern Spain): Albariño and Treixadura (white), Sousón and Mencía (red). The vines were trained in a vertical shoot positioning system using a single Royat cordon, and pruned to spurs with two buds each. Agronomic data (yield, pruning wood weight, Ravaz index) and oenological data in must were collected. The higher planting density (1.40×0.80 m) had no significant effect on grape yield per vine in white varieties, although production per hectare was much higher due to the greater number of plants. In red varieties, this planting density resulted in a significantly lower production per vine, compensated by the greater number of plants. In addition, it significantly reduced the Brix degree in the must of the Albariño, Treixadura and Sousón varieties, and increased the total acidity in the latter two and Mencía. It also caused an increase in extractable and total anthocyanins and IPT in red grapes. The effects of high planting density on grapes are of great interest for the adaptation of varieties in the context of climate change. In the future, it could be advisable to modify the limits imposed by the appellations of origin on the planting density of these varieties in order to obtain more balanced wines.

Under-vine cover crops: impact on weed development, yield and grape composition

This study aims to evaluate the interest of using an under-vine cover crop as a sustainable management tool replacing herbicides or tillage to control weeds, evaluating its effects on yield and berry parameters in a semi-arid climate. 
The performance of Trifolium fragiferum as an under-vine cover crop was evaluated in 2018 and 2019 in a Merlot vineyard in

Disease‐induced alterations in the reflectance spectrum of grape leaves

Context and purpose of the study ‐ Phytopathogenic diseases impact the development and yield of grapevines, resulting in economical, social and environmental losses.