Terroir 2020 banner
IVES 9 IVES Conference Series 9 Viticulture and climate: from global to local

Viticulture and climate: from global to local

Abstract

Aims: This review aims to (1) present the multiple interests of studying and depicting and climate spatial variability for vitivinicultural terroirs study; (2) explain the factors that affect climate spatial variability according to the spatial scale considered and (3) provide guidelines for climate zoning considering challenges linked to each methodology considered.

Methods and Results: Scientific contributions of the 12 Terroir Conferences proceedings since 1996 have been reviewed together with Vitis-Vea, Oeno One, ASEV, ScienceDirect, SpringerLink and Wiley Online Library data bases with various keywords combination of “Climate”, “Spatial analysis”, “Wine”, “Viticulture”, “Area”, “Scale”, “Terroir” and “Zoning”, including English, Italian and Spanish languages. This literature review led to the classification of climate spatial analysis related studies according to the spatial extent, scale, source of data, spatialization method and indices used to depict the spatial structure of climate. To illustrate the scale issue for climate spatial analysis of wine growing terroirs, a comparison of spatial structure of climate depicted by either large scale data (Worldclim v2.0and CRU4.2TS), point data (weather stations) and spatial interpolation of local weather stations was performed in Bordeaux (2001-2005 period) wine region. It shows the limitations of coarse resolution (macroclimate scale) data to depict mesoscale data.

Conclusions: 

The climate spatial variability of wine producing regions have been widely documented, yet not exhaustively. However, climate indices and period are not standardized which makes it difficult to compare the climate of terroirs based on the existing literature. Analysing spatial structure might lead to different conclusions according to the source of the data, and thus special care should be provided to the methods, scale and uncertainties associated to spatial data.

Significance and Impact of the Study: This study provides in a nutshell an overview of climate analysis for terroir studies that could be useful for students, winegrowers and researchers interested in climate spatial analysis.

DOI:

Publication date: March 16, 2021

Issue: Terroir 2020

Type: Video

Authors

Benjamin Bois1,2*

1Centre de Recherches de Climatologie, UMR 6282 CNRS/UB Biogéosciences, Univ. Bourgogne-Franche-Comté, 6 bd Gabriel 21000 Dijon. France
2IUVV, Univ. Bourgogne-Franche-Comté, 1 rue Claude Ladrey, 21000 DIJON, France

Contact the author

Keywords

Climatespatial analysis, spatial scale, viticulture, terroir

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

“Terroir” and grape and wine quality of native grape variety Istrian Malvasia

Viticulture and wine production have a historical tradition in Istria. First written document of vine cultivation in this area date since antiquity. The most wide spread vine variety in Istria is Istrian Malvasia (white variety), and it capture about 60% of total vineyard surface in Istria today.

“Q & A” of the european commission for labeling and desalcoholization for wines: european wine “soft-law”?

Recently, the European Commission seems to have inaugurated a new mechanism for regulating the wine sector. Through two communications, articulated in the form of “Questions & Answers”, concerning the new rules for labeling (24.11.2023) and dealcoholization of wine (15.01.2024), the Commission is not simply “explaining” the new rules but, in an approach close to the theory of “Circulaire Normative” established in comparative law, chooses among different interpretations and even adds Praeter Legem constraints.

VINIoT – Precision viticulture service

The project VINIoT pursues the creation of a new technological vineyard monitoring service, which will allow companies in the wine sector in the SUDOE space to monitor plantations in real time and remotely at various levels of precision. The system is based on spectral images and an IoT architecture that allows assessing parameters of interest viticulture and the collection of data at a precise scale (level of grape, plant, plot or vineyard) will be designed. In France, three subjects were specifically developed: evaluation of maturity, of water stress, and detection of flavescence dorée. For the evaluation of maturity, it has been decided first to work at the berry scale in the laboratory, then at the bunch scale and finally in the vineyard. The acquisition of the spectral hyperstal image as well as the reference analyzes to measure the maturity, were carried out in the laboratory after harvesting the berries in a maturity monitoring context. This work focuses on a case study to predict sugar content of three different grape varieties: Syrah, Fer Servadou and Mauzac. A robust method called Roboost-PLSR, developed in the framework of this work (Courand et al., 2022), to improve prediction model performance was applied on spectra after the acquirement of hyperspectral images. Regarding the evaluation of water stress, to work with a significant variability in terms of water status, it has been worked first with potted plants under 2 different water regimes. The facilities have allowed the supervision of irrigation and micro-climatic conditions. The regression models on agronomic variables (stomatal conductance, water potential, …) are studied. To detect flavescence dorée, the experimental plan has consisted of work at leaf scale in the laboratory first, and then in the field. To detect the disease from hyper-spectral imaging, a combination of multivariate curve resolution-alternating least squares (MCR-ALS) and factorial discriminant analysis (FDA) was proposed. This strategy proved the potential towards the discrimination of healthy and infected leaves by flavescence dorée based on the use of hyperspectral images (Mas Garcia et al., 2021).

Sparkling wines and atypical aging: investigating the risk of refermentation

Sparkling wine (SW) production entails a two-steps process where grape must undergoes a primary fermentation to produce a base wine (BW) which is then refermented to become a SW. This process allows for the development of a new physicochemical profile characterized by the presence of foam and a different organoleptic profile.

Egg allergens in wine. Validation of a new automated method for ovalbumin quantification

Ovalbumin (ova), a natural clarifying protein, is particularly suitable for clarifying red wines. It helps improve the tannic and polyphenolic stability of the wine by removing the most astringent tannins and contributing to soften and refine the structure. Ova binds to suspended particles, proteins, polysaccharides, and, to a lesser extent, tannins through electrostatic and hydrophobic interactions, forming large complexes that can be removed from the wine through fining and/or filtration before bottling.