Terroir 2020 banner
IVES 9 IVES Conference Series 9 Geological, mineralogical and geochemical influences on the cultivation of vines

Geological, mineralogical and geochemical influences on the cultivation of vines

Abstract

Aims: The aims of this study are to determine the influences of the local geology, mineralogy and geochemistry of surroundings, substrate and soil on the cultivation of vines, these as an additional factor of specificity and locality in the production of wine and definition of terroir, as well as for the discrimination of local variance of substrate and soil properties for the strategic management of cultivation plots and/or the evaluation of new cultivation regions, necessary within a scope of global climate change.

Methods and Results: Four vineyards in central Chile were selected for multiple scale geological, geomorphological, mineralogical, geochemical and landscape evolution studies. These included regional to local scale geological and geomorphological mapping, hydrological and hydrogeochemical characterization, and mineralogical, geochemical and physicochemical studies of soil-substrate profiles within contrasting cultivation plots of the selected vineyards. Selection of vineyards included two along the coastal cordillera of Central Chile (Casablanca and San Antonio valleys: sp. Pinot noir), and two along the central depression valleys of south Central Chile (Santa Cruz and San Javier valleys: sp. Carmenere). In addition to soil and substrate studies, analysis of berries and juice were carried out, in order to contrast local plot geochemistry to the chemical properties of berries, and therefore the local influence of substrate/soil properties on production. Results determine that the local geological and geomorphological conditions clearly influence the distribution of substrate-soil and water composition, texture, permeability, and physicochemical properties, influencing equilibrium of pH, Eh and chemical composition of substrate/soil/water/plant interaction, having contrasting effects on the chemistry and properties of berries and juice.

Conclusions: 

Despite a long-standing debate on the influence of geology on the cultivation of vines and how these could affect the quality of wines, results demonstrate that at least local geological and geochemical site conditions do affect the physicochemical and chemical properties of the substrate/soil interface, therefore impacting the availability of natural nutrients, the physicochemical properties of soils (pH/Eh), the chemistry of water, and permeability and texture. Variance of these properties on a local vineyard scale, even at a plot scale, influence vine growth conditions, with an impact on berries and juice, hence, defining properties which may be regionally unique. Discrimination of unique conditions may allow determination of land plot selection criteria, be it for local selection of production plots, or for the evaluation and selection of new cultivation land, especially necessary in times of global climate change.

Significance and Impact of the Study: Chile, a world prime wine producer, must adapt to climate change. At present the production of premium wines is geographically well defined, the prime vine cultivation valleys classified on the base of climate and viticulture conditions, not taking into account the local geological and geomorphological characteristics. Characterization of these conditions further south, in regions that will soon be apt for vine cultivation, is highly relevant in order to ensure new production areas will be similar.

DOI:

Publication date: March 16, 2021

Issue: Terroir 2020

Type: Video

Authors

Brian Townley*, Pamela Castillo, Sofia Lopez

University of Chile, Santiago, Chile

Contact the author

Keywords

Geology, mineralogy, geochemistry, climate change, adaptation

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.