Terroir 2020 banner
IVES 9 IVES Conference Series 9 Geological, mineralogical and geochemical influences on the cultivation of vines

Geological, mineralogical and geochemical influences on the cultivation of vines


Aims: The aims of this study are to determine the influences of the local geology, mineralogy and geochemistry of surroundings, substrate and soil on the cultivation of vines, these as an additional factor of specificity and locality in the production of wine and definition of terroir, as well as for the discrimination of local variance of substrate and soil properties for the strategic management of cultivation plots and/or the evaluation of new cultivation regions, necessary within a scope of global climate change.

Methods and Results: Four vineyards in central Chile were selected for multiple scale geological, geomorphological, mineralogical, geochemical and landscape evolution studies. These included regional to local scale geological and geomorphological mapping, hydrological and hydrogeochemical characterization, and mineralogical, geochemical and physicochemical studies of soil-substrate profiles within contrasting cultivation plots of the selected vineyards. Selection of vineyards included two along the coastal cordillera of Central Chile (Casablanca and San Antonio valleys: sp. Pinot noir), and two along the central depression valleys of south Central Chile (Santa Cruz and San Javier valleys: sp. Carmenere). In addition to soil and substrate studies, analysis of berries and juice were carried out, in order to contrast local plot geochemistry to the chemical properties of berries, and therefore the local influence of substrate/soil properties on production. Results determine that the local geological and geomorphological conditions clearly influence the distribution of substrate-soil and water composition, texture, permeability, and physicochemical properties, influencing equilibrium of pH, Eh and chemical composition of substrate/soil/water/plant interaction, having contrasting effects on the chemistry and properties of berries and juice.


Despite a long-standing debate on the influence of geology on the cultivation of vines and how these could affect the quality of wines, results demonstrate that at least local geological and geochemical site conditions do affect the physicochemical and chemical properties of the substrate/soil interface, therefore impacting the availability of natural nutrients, the physicochemical properties of soils (pH/Eh), the chemistry of water, and permeability and texture. Variance of these properties on a local vineyard scale, even at a plot scale, influence vine growth conditions, with an impact on berries and juice, hence, defining properties which may be regionally unique. Discrimination of unique conditions may allow determination of land plot selection criteria, be it for local selection of production plots, or for the evaluation and selection of new cultivation land, especially necessary in times of global climate change.

Significance and Impact of the Study: Chile, a world prime wine producer, must adapt to climate change. At present the production of premium wines is geographically well defined, the prime vine cultivation valleys classified on the base of climate and viticulture conditions, not taking into account the local geological and geomorphological characteristics. Characterization of these conditions further south, in regions that will soon be apt for vine cultivation, is highly relevant in order to ensure new production areas will be similar.


Publication date: March 16, 2021

Issue: Terroir 2020

Type: Video


Brian Townley*, Pamela Castillo, Sofia Lopez

University of Chile, Santiago, Chile

Contact the author


Geology, mineralogy, geochemistry, climate change, adaptation


IVES Conference Series | Terroir 2020


Related articles…

Detection of spider mite using artificial intelligence in digital viticulture

Aim: Pests have a high impact on yield and grape quality in viticulture. An objective and rapid detection of pests under field conditions is needed. New sensing technologies and artificial intelligence could be used for pests detection in digital viticulture. The aim of this work was to apply computer vision and deep learning techniques for automatic detection of spider mite symptoms in grapevine under field conditions. 

A new approach for sensory characterization of grape. Relationship with chemical composition

Characterize taste and mouthfeel properties of grapes elicited by the phenolic fraction (PF) of grape berries and establish relationships with chemical variables. METHODS: As many as 31 diverse grape lots of Tempranillo Tinto and Garnacha Tinta from three different regions were harvested. Grapes were destemmed and macerated in 15% of ethanol for one week and extracts were submitted to solid phase extraction. The recovered polyphenolic fraction was reconstituted in wine model and characterized by a panel of 21 wine experts employing a list of 23 taste and mouthfeel-related attributes following a rate-k-attributes methodology. RESULTS: Six significant attributes among the 31 samples differed based on ANOVA results: “dry”, “coarse”, “bitter”, “dry on tongue”, “sticky” and “watery”. PCA with VARIMAX algorithm was calculated.


The quality of wines has often been associated with their geographical area of production. The aim of this work was to characterize Protected Designation of Origin (PDO) Xinomavro red wines from different geographical areas of Amyndeon and Naoussa in Northern Greece, elaborated with variables that contribute to their differentiation, such as soil characteristics, altitude, monthly average temperature and rainfall.
Xinomavro fruit parcels from different vineyards within the two PDO zones (5 PDO Naoussa and 6 PDO Amyndeon) were vinified following a standard winemaking process. A total of 25 aroma compounds were quantified using gas chromatography-mass spectrometry (GC-MS) with simultaneous full scan and selected ion monitoring for data recording, and odor activity values (OAVs) were determined.

A worldwide perspective on viticultural zoning

Cet article répertorie les intérêts et problèmes du zonage viticole dans une perspective mondiale. Le zonage est un besoin pour chacun des vignobles mondiaux où il correspond à des applications, définitions et approches variées. Les objectifs du zonage changent de concert avec les besoins du marché mondial du vin, qui ne cesse de croître.

Does the sustainability perception depend on the Terroir?

The main scope of this research has been to investigate what values are attributed to the concept of “sustainability” by the wine producers of two different wine territories of Piedmont; the terroir of the Barolo DOCG and the the terroir of the Gavi DOCG. The research wants to emphasize how much the characteristic elements of each terroir influence the perception of the concept of sustainability among producers.