Terroir 2020 banner
IVES 9 IVES Conference Series 9 A vine physiology-based terroir study in the AOC-Lavaux region in Switzerland

A vine physiology-based terroir study in the AOC-Lavaux region in Switzerland

Abstract

OENO One – Special issue

Understanding how different pedoclimatic conditions interact with vine and berry physiology, and subsequently impact wine quality, is paramount for an good valorization of viticultural terroirs and can help to optimize mitigation strategies in the face of global warming.
The aim of the present study was to establish terroir zones in a steep slope region in Switzerland based on vine and berry physiology. The study area, Villette in the AOC Lavaux, was a unique experimental site due to the homogeneity of plant material in a relatively small microclimate (140 ha) and a multiplicity of different expositions, soil types and altitudes. Vine and berry physiology as well as temperature of twenty-two plots were monitored during three consecutive seasons to investigate whether a link with pedoclimatic parameters can be established.

The annual temporal variation of the average temperature was 142 growing degree days (GDD) over all years. Remarkably, spatial temperature variability was twice as high, with a variation between most extreme plots of 395 GDDs on average over all years. PCA and hierarchical clustering of assessed vine and berry physiological parameters resulted in a vintage dependent grouping of plots differing between years, which was not congruent with geological entities. This highlights the importance of the vintage effect, which had a large influence on vine and berry physiology and impacted terroir zones more than soil groups. Important differences in budburst and flowering were observed between plots, whereas altitude was the main driver of precocity in all years, being relatively independent of the vintage, which confirms the importance of topography in viticultural terroirs.

DOI:

Publication date: March 16, 2021

Issue: Terroir 2020

Type: Video

Authors

Markus Rienth1*, Frédéric Lamy1, Patrick Schoenenberger1, Dorothea Noll1, Fabrice Lorenzini2, Olivier Viret4and Vivian Zufferey3

1 Changins, University of Sciences and Art Western Switzerland, Changins College for Viticulture and Enology, route de Duillier 60, 1260 Nyon, Switzerland
2 Agroscope, route de Duillier 50, 1260 Nyon, Switzerland
3 Agroscope, avenue Rochettaz 21, 1009 Pully, Switzerland
4 Service de leo’agriculture et de la viticulture (SAVI), Avenue de Marcelin 29, 1110 Morges, Switzerland

Contact the author

Keywords

Viticultural terroir, berry ripening, temperature variability, phenology, climate change

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

UHPLC-HRMS analysis for the evaluation of formation and degradation of polysulfides in wine 

The contribution of sulfur compounds to wine aroma has been studied for several years, as their role can be either positive, contributing to the fruitiness and typicity of some white wines like Sauvignon blanc, or negative when related to off-flavours caused by H2S.

Definition of functional indicators of the vine to characterize wine terroirs

La caractérisation des terroirs viticoles est traditionnellement basée sur des descripteurs de la géologie et de la pédologie des différents milieux rencontrés, couplées à des données climatiques

Impact of climate change on the aroma of red wines: a focus on dried fruit aromas

The volatile composition of grapes (free and bound forms) contributes greatly to the varietal aroma and quality of wines. Several agronomical parameters affect grapes composition and wine quality: maturity level at harvest, water status, and the intensity of sun exposure.

Hydroxycinnamic acids in grapes and wines made of Tannat, Marselan and Syrah from Uruguay

Background: hydroxycinnamic acids (HCA), present in pulp and skin of grapes, are relevant compounds in red winemaking

Differential gene expression and novel gene models in 110 Richter uncovered through RNA Sequencing of roots under stress

The appearance of the Phylloxera pest in the 19th century in Europe caused dramatical damages in grapevine diversity. To mitigate these losses, grapevine growers resorted to using crosses of different Vitis species, such as 110 Richter (110R) (V. berlandieri x V. rupestris), which has been invaluable for studying adaptations to stress responses in vineyards. Recently, a high quality chromosome scale assembly of 110R was released, but the available gene models were predicted without using as evidence transcriptional sequences obtained from roots, that are crucial organs in rootstock, and they may express certain genes exclusively. Therefore, we employed RNA sequencing reads of 110R roots under different stress conditions to predict new gene models in each haplotype of 110R under different stresses.