Terroir 2020 banner
IVES 9 IVES Conference Series 9 A vine physiology-based terroir study in the AOC-Lavaux region in Switzerland

A vine physiology-based terroir study in the AOC-Lavaux region in Switzerland

Abstract

OENO One – Special issue

Understanding how different pedoclimatic conditions interact with vine and berry physiology, and subsequently impact wine quality, is paramount for an good valorization of viticultural terroirs and can help to optimize mitigation strategies in the face of global warming.
The aim of the present study was to establish terroir zones in a steep slope region in Switzerland based on vine and berry physiology. The study area, Villette in the AOC Lavaux, was a unique experimental site due to the homogeneity of plant material in a relatively small microclimate (140 ha) and a multiplicity of different expositions, soil types and altitudes. Vine and berry physiology as well as temperature of twenty-two plots were monitored during three consecutive seasons to investigate whether a link with pedoclimatic parameters can be established.

The annual temporal variation of the average temperature was 142 growing degree days (GDD) over all years. Remarkably, spatial temperature variability was twice as high, with a variation between most extreme plots of 395 GDDs on average over all years. PCA and hierarchical clustering of assessed vine and berry physiological parameters resulted in a vintage dependent grouping of plots differing between years, which was not congruent with geological entities. This highlights the importance of the vintage effect, which had a large influence on vine and berry physiology and impacted terroir zones more than soil groups. Important differences in budburst and flowering were observed between plots, whereas altitude was the main driver of precocity in all years, being relatively independent of the vintage, which confirms the importance of topography in viticultural terroirs.

DOI:

Publication date: March 16, 2021

Issue: Terroir 2020

Type: Video

Authors

Markus Rienth1*, Frédéric Lamy1, Patrick Schoenenberger1, Dorothea Noll1, Fabrice Lorenzini2, Olivier Viret4and Vivian Zufferey3

1 Changins, University of Sciences and Art Western Switzerland, Changins College for Viticulture and Enology, route de Duillier 60, 1260 Nyon, Switzerland
2 Agroscope, route de Duillier 50, 1260 Nyon, Switzerland
3 Agroscope, avenue Rochettaz 21, 1009 Pully, Switzerland
4 Service de leo’agriculture et de la viticulture (SAVI), Avenue de Marcelin 29, 1110 Morges, Switzerland

Contact the author

Keywords

Viticultural terroir, berry ripening, temperature variability, phenology, climate change

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Recovery and purification of proteins from grape seed byproducts using proteomic and separative techniques

Grape seeds account for around 5% of the weight of the whole grape berry, representing approximately 40%-50% of the solid by-products that the different wine industries generate during the winemaking process.

Comparison between satellite and ground data with UAV-based information to analyse vineyard spatio-temporal variability

Currently, the greatest challenge for vine growers is to improve the yield and quality of grapes by minimizing costs and environmental impacts. This goal can be achieved through a better knowledge of vineyard spatial variability. Traditional platforms such as airborne, satellite and unmanned aerial vehicles (UAVs) solutions are useful investigation tools for vineyard site specific management.

Agroclimatic characterisation of the Portugese wine denominations of origin using a compound index

Aims: This study aims to: (1) characterize the agroclimatic conditions of the Portuguese Denominations of Origin, using a compound index that combines thermal and soil water balance conditions and a high-resolution climatic dataset (~1 km spatial resolution); (2) categorize the main grapevine varieties as a function of this compound index.

Red wine astringency: evolution of tribological parameters during different harvest dates

Astringency is a specific oral sensation dominated by dryness and puckering feeling and is one of the leading quality factors for red wines, as well as some fruit products

Influence of two yeast strains and different nitrogen nutrition on the aromatic compounds in Lugana wine

Lugana Protected Designation of Origin (PDO) wines are made from Turbiana grapes. The aroma of Lugana wines results from the combined contribution of esters, terpenes, norisprenoids, sulfur compounds and the benzenoid methyl salicylate. This study aims to investigate how volatile aroma compounds are affected by different nitrogen supplies and yeast strains. Wines were produced with a standard protocol with 2021 Turbiana grapes with two different yeasts Zymaflore Delta e Zymaflore X5 (Laffort, France).During the alcoholic fermentation of the must, when H2S appeared, additions of various nitrogen supply were made: inorganic nitrogen, organic nitrogen, a mix of inorganic and organic nitrogen and organic nitrogen with an addition of pure methionine. During wine fermentation, a daily measurement of hydrogen sulfide was carried out.