Terroir 2020 banner
IVES 9 IVES Conference Series 9 A vine physiology-based terroir study in the AOC-Lavaux region in Switzerland

A vine physiology-based terroir study in the AOC-Lavaux region in Switzerland

Abstract

OENO One – Special issue

Understanding how different pedoclimatic conditions interact with vine and berry physiology, and subsequently impact wine quality, is paramount for an good valorization of viticultural terroirs and can help to optimize mitigation strategies in the face of global warming.
The aim of the present study was to establish terroir zones in a steep slope region in Switzerland based on vine and berry physiology. The study area, Villette in the AOC Lavaux, was a unique experimental site due to the homogeneity of plant material in a relatively small microclimate (140 ha) and a multiplicity of different expositions, soil types and altitudes. Vine and berry physiology as well as temperature of twenty-two plots were monitored during three consecutive seasons to investigate whether a link with pedoclimatic parameters can be established.

The annual temporal variation of the average temperature was 142 growing degree days (GDD) over all years. Remarkably, spatial temperature variability was twice as high, with a variation between most extreme plots of 395 GDDs on average over all years. PCA and hierarchical clustering of assessed vine and berry physiological parameters resulted in a vintage dependent grouping of plots differing between years, which was not congruent with geological entities. This highlights the importance of the vintage effect, which had a large influence on vine and berry physiology and impacted terroir zones more than soil groups. Important differences in budburst and flowering were observed between plots, whereas altitude was the main driver of precocity in all years, being relatively independent of the vintage, which confirms the importance of topography in viticultural terroirs.

DOI:

Publication date: March 16, 2021

Issue: Terroir 2020

Type: Video

Authors

Markus Rienth1*, Frédéric Lamy1, Patrick Schoenenberger1, Dorothea Noll1, Fabrice Lorenzini2, Olivier Viret4and Vivian Zufferey3

1 Changins, University of Sciences and Art Western Switzerland, Changins College for Viticulture and Enology, route de Duillier 60, 1260 Nyon, Switzerland
2 Agroscope, route de Duillier 50, 1260 Nyon, Switzerland
3 Agroscope, avenue Rochettaz 21, 1009 Pully, Switzerland
4 Service de leo’agriculture et de la viticulture (SAVI), Avenue de Marcelin 29, 1110 Morges, Switzerland

Contact the author

Keywords

Viticultural terroir, berry ripening, temperature variability, phenology, climate change

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

De novo Vitis champinii whole genome assembly allows rootstock-specific identification of potential candidate genes for drought and salt tolerance

Vitis champinii cultivars Ramsey and Dog-ridge are main choices for rootstocks to adapt viticulture in semi-arid and arid regions thanks to their distinctive tolerance to drought and salinity. However, genetic studies on non-vinifera rootstocks have heavily relied on the grapevine (Vitis vinifera) reference genome, which difficulted the assessment of the genetic variation between rootstock species and grapevines. In the present study, this limitation is addressed by introducing a novo phased genome assembly and annotation of Vitis champinii. This new Vitis champinii genome was employed as reference for mapping RNA-seq reads from the same species under drought and salt stresses, and for comparison the same reads were also mapped to the Vitis vinifera PN40024.V4 reference genome. A significant increase in alignment rate was gained when mapping Vitis champinii RNA-seq reads to its own genome, compared to the Vitis vinifera PN40024.V4 reference genome, thus revealing the expression levels of genes specific to Vitis champinii. Moreover, differences in coding sequences were observed in ortholog genes between Vitis champinii and Vitis vinifera, which therefore challenges previous differential expression analyses performed between contrasting Vitis genotypes on the same gene from the Vitis vinifera genome. Genes with possible implications in drought and salt tolerance have been identified across the genome of Vitis champinii, and the same genomic data can potentially guide the discovery of candidate genes specific from Vitis champinii for other traits of interest, therefore becoming a valuable resource for rootstock breeding designs, specially towards increased drought and salinity due to climate change.

HPLC and SEC analysis on the flavonoids and the skin cell wall material of Merlot berries reveals new insights into the study of the phenolic maturity

Anthocyanins and tannins contribute to important sensorial traits of red wines, such as color and mouthfeel attributes.

Toasting and grain effect on Tempranillo red wine aged in Quercus petraea barrels

The barrel-making process is widely recognized as a crucial practice that affects the composition of barrel-aged wine. After the drying process, the staves are considered ready for barrel assembly, which includes the processes of bending and toasting the barrel structure. Toasting is considered one of the most critical stages in determining the physical and chemical composition of the staves, which can influence the chemical and sensory composition of the wine aged in barrels made from them [1].

Improvement of sparkling wines production by a zoning approach in Franciacorta (Lombardy, Italy)

Franciacorta is a viticultural area which extends in the hills to the South of Iseo lake in Lombardy. It is particularly famous for the production of sparkling wines obtained mostly from Chardonnay and Pinot blanc and noir grapes. The name of this territory is of medieval origin and appeared for the first time in 1277 as “Franzacurta”, from the Latin “franchae curtes”, i.e. “tax-free” monasteries. It was geographically delimited in 1429, when it was a territory of the Republic of Venezia.

Understanding wine as a sensory, emotional, and cognitive experience to promote and communicate conscious consumption

In the complex scenario that the wine industry and its promotion are currently facing, this research proposes a theoretical expansion of the traditional model used to understand the wine experience, namely the classic sensory, emotional and cognitive triad, moving toward a multidimensional approach that also incorporates cultural, symbolic and contextual dimensions in order to comprehend the conscious experience.