Terroir 2020 banner
IVES 9 IVES Conference Series 9 A vine physiology-based terroir study in the AOC-Lavaux region in Switzerland

A vine physiology-based terroir study in the AOC-Lavaux region in Switzerland

Abstract

OENO One – Special issue

Understanding how different pedoclimatic conditions interact with vine and berry physiology, and subsequently impact wine quality, is paramount for an good valorization of viticultural terroirs and can help to optimize mitigation strategies in the face of global warming.
The aim of the present study was to establish terroir zones in a steep slope region in Switzerland based on vine and berry physiology. The study area, Villette in the AOC Lavaux, was a unique experimental site due to the homogeneity of plant material in a relatively small microclimate (140 ha) and a multiplicity of different expositions, soil types and altitudes. Vine and berry physiology as well as temperature of twenty-two plots were monitored during three consecutive seasons to investigate whether a link with pedoclimatic parameters can be established.

The annual temporal variation of the average temperature was 142 growing degree days (GDD) over all years. Remarkably, spatial temperature variability was twice as high, with a variation between most extreme plots of 395 GDDs on average over all years. PCA and hierarchical clustering of assessed vine and berry physiological parameters resulted in a vintage dependent grouping of plots differing between years, which was not congruent with geological entities. This highlights the importance of the vintage effect, which had a large influence on vine and berry physiology and impacted terroir zones more than soil groups. Important differences in budburst and flowering were observed between plots, whereas altitude was the main driver of precocity in all years, being relatively independent of the vintage, which confirms the importance of topography in viticultural terroirs.

DOI:

Publication date: March 16, 2021

Issue: Terroir 2020

Type: Video

Authors

Markus Rienth1*, Frédéric Lamy1, Patrick Schoenenberger1, Dorothea Noll1, Fabrice Lorenzini2, Olivier Viret4and Vivian Zufferey3

1 Changins, University of Sciences and Art Western Switzerland, Changins College for Viticulture and Enology, route de Duillier 60, 1260 Nyon, Switzerland
2 Agroscope, route de Duillier 50, 1260 Nyon, Switzerland
3 Agroscope, avenue Rochettaz 21, 1009 Pully, Switzerland
4 Service de leo’agriculture et de la viticulture (SAVI), Avenue de Marcelin 29, 1110 Morges, Switzerland

Contact the author

Keywords

Viticultural terroir, berry ripening, temperature variability, phenology, climate change

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Similarities among wine aromas and landscape scents around the vineyard in five Mediterranean sites

We compared 68 aroma compounds in wines from 5 vineyards in order to see similarities among the wine aroma and the scent of some of the main native plants from the respective vineyards.

Terroirs de Balagne: focus sur le Vermentinu

Depuis 2002, le CIVAM de la région Corse, a entrepris une étude des terroirs viticoles de l’appellation AOC Corse-Calvi (Balagne), comprenant la cartographie des terroirs à potentialité viticole

VOLATILE COMPOSITION OF WINES USING A GC/TOFMS: HS-SPME VS MICRO LLE AS SAMPLE PREPARATION METHODOLOGY

Wine aroma analysis can be done by sensorial or instrumental analysis, the latter involving several me-thodologies based on olfactometric detection, electronic noses or gas chromatography. Gas Chromatography has been widely used for the study of the volatile composition of wines and depending on the detection system coupled to the chromatographic system, quantification and identification of individual compounds can be achieved.

Physiological and performance responses of grapevine rootstocks to water deficit and recovery 

Rootstocks play a key role in the grapevine’s adaptation to the increasing soil water scarcity related to climate change. A pot experiment carried out in 2022 aimed at assessing the physiological responses of seven ungrafted rootstocks to a progressive soil water deficit and a subsequent recovery to field capacity.

Improvement of sparkling wines production by a zoning approach in Franciacorta (Lombardy, Italy)

Franciacorta is a viticultural area which extends in the hills to the South of Iseo lake in Lombardy. It is particularly famous for the production of sparkling wines obtained mostly from Chardonnay and Pinot blanc and noir grapes. The name of this territory is of medieval origin and appeared for the first time in 1277 as “Franzacurta”, from the Latin “franchae curtes”, i.e. “tax-free” monasteries. It was geographically delimited in 1429, when it was a territory of the Republic of Venezia.