Terroir 2020 banner
IVES 9 IVES Conference Series 9 A vine physiology-based terroir study in the AOC-Lavaux region in Switzerland

A vine physiology-based terroir study in the AOC-Lavaux region in Switzerland

Abstract

OENO One – Special issue

Understanding how different pedoclimatic conditions interact with vine and berry physiology, and subsequently impact wine quality, is paramount for an good valorization of viticultural terroirs and can help to optimize mitigation strategies in the face of global warming.
The aim of the present study was to establish terroir zones in a steep slope region in Switzerland based on vine and berry physiology. The study area, Villette in the AOC Lavaux, was a unique experimental site due to the homogeneity of plant material in a relatively small microclimate (140 ha) and a multiplicity of different expositions, soil types and altitudes. Vine and berry physiology as well as temperature of twenty-two plots were monitored during three consecutive seasons to investigate whether a link with pedoclimatic parameters can be established.

The annual temporal variation of the average temperature was 142 growing degree days (GDD) over all years. Remarkably, spatial temperature variability was twice as high, with a variation between most extreme plots of 395 GDDs on average over all years. PCA and hierarchical clustering of assessed vine and berry physiological parameters resulted in a vintage dependent grouping of plots differing between years, which was not congruent with geological entities. This highlights the importance of the vintage effect, which had a large influence on vine and berry physiology and impacted terroir zones more than soil groups. Important differences in budburst and flowering were observed between plots, whereas altitude was the main driver of precocity in all years, being relatively independent of the vintage, which confirms the importance of topography in viticultural terroirs.

DOI:

Publication date: March 16, 2021

Issue: Terroir 2020

Type: Video

Authors

Markus Rienth1*, Frédéric Lamy1, Patrick Schoenenberger1, Dorothea Noll1, Fabrice Lorenzini2, Olivier Viret4and Vivian Zufferey3

1 Changins, University of Sciences and Art Western Switzerland, Changins College for Viticulture and Enology, route de Duillier 60, 1260 Nyon, Switzerland
2 Agroscope, route de Duillier 50, 1260 Nyon, Switzerland
3 Agroscope, avenue Rochettaz 21, 1009 Pully, Switzerland
4 Service de leo’agriculture et de la viticulture (SAVI), Avenue de Marcelin 29, 1110 Morges, Switzerland

Contact the author

Keywords

Viticultural terroir, berry ripening, temperature variability, phenology, climate change

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

DISCRIMINATION OF BOTRYTIS CINEREA INFECTED GRAPES USING UNTARGE-TED METABOLOMIC ANALYSIS WITH DIRECT ELECTROSPRAY IONISATION MASS SPECTROMETRY

Infection of grapes (Vitis vinifera) by Botrytis cinerea (grey mould) is a frequent occurrence in vineyards and during prolonged wet and humid conditions can lead to significant detrimental impact on yield and overall quality. Growth of B. cinerea causes oxidisation of phenolic compounds resulting in a loss of colour and formation of a suite of off-flavours and odours in wine made from excessively infected fruit. Apart from wine grapes, developing post-harvest B. cinerea infection in high-value horticultural products during storage, shipment and marketing may cause significant loss in fresh fruits, vegetables and other crops. A rapid and sensitive assessment method to detect, screen and quantify fungal infection would greatly assist viticultural growers and winemakers in determining fruit quality.

Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

A method of suspect screening analysis to study grape metabolomics, was developed [1]. By performing ultra-high performance liquid chromatography (UHPLC) – high-resolution mass spectrometry (HRMS) analysis of the grape extract, averaging 320-450 putative grape compounds are identified which include mainly polyphenols. Identification of metabolites is performed by a new HRMS-database of putative grape and wine compounds expressly constructed (GrapeMetabolomics) which currently includes around 1,100 entries.

Chemical and colorimetric study of copigmentation between malvidin-3-O-glucoside and wine polyphenols and polysaccharides

The objective of this work was to perform a colorimetric study of the copigmentation between malvidin-3-O-glucoside, one of the main anthocyanins in red wines,

Stem growth disorder and xylem anatomy modifications during esca pathogenesis in grapevines

Esca is a grapevine vascular disease with detrimental consequences on vineyard yield and longevity. Recently, esca leaf symptom development has been shown to result in the occlusion of xylem vessels by tyloses in leaves and stems, leading to hydraulic failure. However, little is known regarding the response of xylem anatomy and stem growth to esca in different varieties . Here we studied the impact of esca leaf symptom development on grapevine physiology, stem growth, and xylem anatomy in two widespread cultivars, Cabernet sauvignon and Sauvignon blanc.

GrapeBreed4IPM: A horizon Europe project for sustainable viticulture through multi-actor breeding and innovation

Biodiversity loss and ecosystem degradation are among the greatest challenges of our time, and agriculture’s use of pesticides is a major driver.