Terroir 2008 banner
IVES 9 IVES Conference Series 9 New tools for a visual analysis of vineyard landscapes?

New tools for a visual analysis of vineyard landscapes?

Abstract

A vineyard landscape is above all an area observed by someone, that is to say a physical entity perceved and represented by this person. 
We try here to analyse more precisely the constitutive forms of vineyard landscapes and their visual perception. We use different complementary methods: 
– plastic and aesthetic landscape analysis, 
– modelling of some parameters like visual accessibility of landscape, 
– analysis of the observer’s attitude and eye tracking. 
Combination of these different analysis tools gives us a better knowledge of vineyard landscapes and their evolutions. It can appear useful for touristic or technical development. 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Stéphanie OULES BERTON (1), Vincent BOUVIER (2), Laure CORMIER (2), Jean DUCHESNE (2), Fabienne JOLIET (2)

(1) Confédération des Vignerons du Val de Loire – Institut National d’Horticulture (INH)
(2) Institut National d’Horticulture (INH)
INH – 2 rue Le Nôtre – 49045 Angers cedex 1 – France

Contact the author

Keywords

vineyard landscape, forms, visual perception, plastic analysis, eye tracking 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Exploring the regulatory role of the grapevine MIXTA homologue in cuticle formation and abiotic stress resilience

The outer waxy layer of plant aerial structures, known as the cuticle, represents an important trait that can be targeted to increase plant tolerance against abiotic stresses exacerbated by environmental transition. The MIXTA transcription factor, member of the R2R3-MYB family, is known to affect conical shape of petal epidermal cells in Anthirrinum, cuticular thickness in tomato fruit and trichome formation and morphology in several crops. The aim of this study was to investigate the role of the grapevine MIXTA homologue by phenotypic and molecular characterization of overexpressing and knock-out grapevine lines.

Freeze-thaw treatment to enhance phenolic ripening and tannin oxidation of seeds

Phenolic ripening represents a major interest for quality wine producers. Nevertheless, climatic or genotypical limitations can often prevent optimal maturation process. During winemaking seeds can be easily separated and technologically processed to improve their quality.

From soil to canopy, the diversity of adaptation strategies  to abiotic constraints in grapevine

Climate change is here. One of the main consequences is an increase in the frequency and severity of abiotic stresses which mostly occur in a combined manner. Grapevine, which grows in a large diversity of pedo-climatic conditions, has presumably evolved different mechanisms to allow this widespread adaptation. Harnessing the genetic diversity in these mechanisms will be central to the future of viticulture in many traditional wine growing areas. The interactions between the scion and the rootstock through grafting add an additional level of diversity and adaptive potential to explore.
At the physiological level, these mechanisms are related to processes such as root system development and functioning (water and nutrient uptake), interactions with the soil microbiome, gas exchange regulation, hydraulic properties along the soil-plant-atmosphere continuum, reserve storage, short and long distance signaling mechanisms and plasticity for some of these traits.

An internet-based gis application for vineyard site assessment in the U.S. and matching grape variety to site

Vineyard site selection and determination of adapted grape varieties for a site are the most fundamental factors contributing to vineyard success, but can be challenging to ascertain

Drought effect on aromatic and phenolic potential of seven recovered grapevine varieties in Castilla-La Mancha region (Spain)

The effects of climate change are seriously affecting the quality of wine grapes. High temperatures and drought cause imbalances in the chemical composition of grapes. The result is overripe grapes with low acidity and high sugar content, which produce wines with excessive alcohol content, lacking in freshness and not very aromatic. As a consequence, the search of varieties with capacity of produce quality grapes in adverse climate conditions is a good alternative to preserve the sustainability of vineyards. In this work, quality parameters of seven Vitis vinifera L. cultivars (five whites and two reds) recently recovered from extinction and grown under two different hydric regimes (rainfed and irrigated) were analyzed during the 2020 vintage. At harvest time, weight of 100 berries, must physicochemical parameters (brix degree, total acidity, malic acid, pH), and carbon and oxygen isotope ratios (δ13C, δ18O) were determined. Subsequently, varietal aroma potential index (IPAv) and total polyphenol index (TPI) were analyzed. Quality parameters, IPAv and TPI, showed significant differences between varieties and water regimes. Both red varieties, Moribel and Tinto Fragoso, stood out for their high aromatic and phenolic potential, which was higher under rainfed regime. Regarding to white varieties, Montonera del Casar and Jarrosuelto stood out in terms of varietal aroma potential. Montonera del Casar high acidity in its musts and Jarrosuelto showed the highest berry weights.