Terroir 2020 banner
IVES 9 IVES Conference Series 9 Variability of Tempranillo phenology within the toro do (Spain) and its relationship to climatic characteristics

Variability of Tempranillo phenology within the toro do (Spain) and its relationship to climatic characteristics

Abstract

Aims: The objective of this research was to analyse the spatial and temporal variability of vine phenology of the Tempranillo variety in the Toro Designation of Origen (DO) related to climatic conditions at present and under future climate change scenarios.

Methods and Results: Seven plots planted with Tempranillo, distributed throughout the DO, and located at elevations between 630 and 790 m a.s.l were considered in this analysis. Phenological dates referred to bud break, bloom, veraison and maturity recorded in each plot for the period 2005-2019 were analysed. The information was supplied by the Consejo Regulador of Toro Designation of Origin (Toro DO). The weather conditions recorded during the period under study were analysed using data recorded in Toro. The thermal requirements to reach each phenological stage were evaluated and expressed as the GDD accumulated from DOY=90, which were considered to predict the changes under future climatic conditions. For future climatic conditions, temperature and precipitation predicted by 2050 and 2070 under two Representative Concentration Pathway (RCP) scenarios –RCP4.5 and RCP8.5-, based on an ensemble of models, were used to predict the changes in phenology.

During the analysed period, the dates at which the different phenological stages were reached presented high variability, with bud break between April 5th and May 7th; bloom between May 3rd and July 14th, veraison between July 20th and August 21st and maturity between September 1st and October 2nd. The earliest dates were observed in the hottest year (e.g. 2017), while the latest dates were recorded in the coolest and wettest years (eg. 2008, 2013 or 2018). Water deficits also gave rise to advances in phenological timing (e.g. 2009, 2015), which affect more the later than the earlier phenological states. Water deficit in the BL-V period had a significant effect on veraison, while in general the maturity was also affected by water existing in the BB-BL period. Some spatial variability was observed in the phenological dates, although the trend was not uniform for all the stages or for all years. Taking into account the thermal requirements to reach each stage and the predictions under future climate scenarios, advances in all phenological dates were projected, higher for the later than for the earlier stages, which may be of up 6 and 8 days for bud break, 7-10 days for bloom, 8 to 11 days for veraison, and 12 to 19 days for maturity by 2050, respectively under RCP4.5 and RCP8.5 emission scenarios.

Conclusion: 

Based on the climate change projections, the Tempranillo variety cultivated in Toro DO may suffer an advance of all phenological stages, having harvest earlier and under warmer conditions, which could also affect grape composition.

Significance and Impact of the Study: Tempranillo is the third most cultivated wine variety in the world, being 88% of it cultivated in Spain, and in the Toro DO the main variety (“Tinta de Toro”) covering about 5100 ha. Thus, the knowledge of the vine response under future conditions could be a tool to adopt measurements to mitigate the effects of climate change in the area.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Daniël T.H.C. Go1, Santiago Castro, María Concepción Ramos1*

1Department of Environment and Soil Sciences, University of Lleida-Agrotecnio, Spain
2Consejo Regulador DO Toro, Toro, Zamora, Spain

Contact the author

Keywords

Climatic change, phenological dates, spatial and temporal variability, temperature, Toro DO, water deficit

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Egg allergens in wine. Validation of a new automated method for ovalbumin quantification

Ovalbumin (ova), a natural clarifying protein, is particularly suitable for clarifying red wines. It helps improve the tannic and polyphenolic stability of the wine by removing the most astringent tannins and contributing to soften and refine the structure. Ova binds to suspended particles, proteins, polysaccharides, and, to a lesser extent, tannins through electrostatic and hydrophobic interactions, forming large complexes that can be removed from the wine through fining and/or filtration before bottling.

IMPACT OF MINERAL AND ORGANIC NITROGEN ADDITION ON ALCOHOLIC FERMENTATION WITH S. CEREVISIAE

During alcoholic fermentation, nitrogen is one of essential nutrient for yeast as it plays a key role in sugar transport and biosynthesis of and wine aromatic compounds (thiols, esters, higher alcohols). The main issue of a lack in yeast assimilable nitrogen (YAN) in winemaking is sluggish or stuck fermentations promoting the growth of alteration species and leads to economic losses. Currently, grape musts are often characterized by low YAN concentration and an increase of sugars concentration due to global warming, making alcoholic fermentations even more difficult. YAN depletion can be corrected by addition of inorganic (ammonia) or organic (yeast derivatives products) nitrogen during alcoholic fermentation.

Analysis of temporal variability of cv. Tempranillo phenology within Ribera del Duero Do (Spain) and relationships with climatic characteristics

The Ribera del Duero Designation of Origin (DO) has acquired great recognition during the last decades, being considered one of the highest quality wine producing regions in the world. This DO has grown from 6,460 ha of vineyards officially registered in 1985 to approximately 21,500 ha in 2013. The total grape production stands at around 90 million kg, with an average yield that approaches nearly 4,500 kg/ha. Most vineyards are cultivated under rainfed conditions.

A mechanistic investigation of H/D scrambling processes in flavonoids

Several classes of flavonoids, such as anthocyanins, flavonols, flavanols and flavones, undergo a slow H/D exchange on aromatic ring A, leading to full deuteration at positions C(6) and C(8). Within the flavanol class, H-C(6) and H-C(8) of catechin and epicatechin are slowly exchanged in D2O to the corresponding deuterated analogues; even quercetin, a relevant flavonol representative, shows the same behaviour in a D2O/DMSOd6 1:1 solution. Detailed kinetic measurements of these H/D scrambling processes are here reported by exploiting the time-dependent changes of their peak areas in the 1H-NMR spectra taken at different temperatures. A unifying reaction mechanism is also proposed based on our detailed kinetic observations, even taking into account pH and solvent effects. Molecular modelling and QM calculations were also carried out to shed more light on several molecular details of the proposed mechanism.

Improvement of non-Saccharomyces yeast dominance during must fermentation by using spontaneous mutants resistant to SO2, EtOH and high pressure of CO2

AIM: A genetic study of four wine T. delbrueckii strains was done. Spore clones free of possible recessive growth‐retarding alleles with enhanced resistance to winemaking stressing conditions were obtained from these yeasts. METHODS: The genetic marker of resistance to cycloheximide (cyhR) allows easy monitoring of the new mutants obtained from these yeasts.