Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 Mannoprotein extracts from wine lees: characterization and impact on wine properties

Mannoprotein extracts from wine lees: characterization and impact on wine properties


This study aims at exploiting an undervalued winemaking by-product, wine yeast lees, by developing efficient and food-grade methods for the extraction of yeast glycoproteins. These extracts were then supplemented to wine and their impact on wine properties assessed. White wine lees were produced by fermenting Sauvignon blanc grape juice with S. cerevisiae Uvaferm HPS strain. Three extraction methods were applied on lees using physical (autoclave and sonication) or enzymatic (Glucanex®, an industrial β-glucanases) approaches. Glycoproteins extracts were characterized by SEC-HPLC and SDS-PAGE. After their addition to wine (0.5 g/L), no alteration of wine clarity was detected. The ultrasonication and enzymatic extracts, containing a relatively low amount of glycoproteins, led to a significant decrease in wine protein haze formation upon heat test (-7%). Conversely, the autoclave extract was the richest in glycoproteins and had a positive impact on wine foaming properties, inducing an increase in foam’s maximum height and stability which were 2.6 and 3.6 times higher compared to a model wine. The autoclave extract improved tartrate stability as shown by a decrease in wine conductance (-11%) compared to the untreated wine. Results suggest that white wine lees could be considered a valuable source of glycosylated proteins with potential applications in winemaking. In this context, the autoclave appears as the more promising method in terms of both efficiency and extract’s effectiveness. The proposed food-grade exploitation approach could represent an important tool to improve the environmental and economical sustainability of the wine supply chain.


Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article


Alberto De Iseppi1, Andrea Curioni1,2, Giovanna Lomolino1, Matteo Marangon1, Simone Vincenzi1,2 and Benoit Divol3

1Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università, 16, 35020, Legnaro, Padova, Italy
2Centre for Research in Viticulture and Enology (CIRVE), Viale XXVIII Aprile 14, 31015, Conegliano, Italy
3South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa

Contact the author


Enoforum 2021 | IVES Conference Series


Related articles…

Impact of toasting on oak wood aroma: creation of an oak wood aroma wheel

The impact of toasting process to produce aroma from oak wood intrinsic composition is well documented. It is admitted that such complexity contribute to the wine quality after barrel ageing. Despite our knowledge on the molecular identification of aroma impact compounds of oak wood, little research have been carried out, on a sensory level, on the aroma diversity of toasted oak wood.

Study of the interactions between wine anthocyanins and proline rich proteins

The interaction between tannins and salivary proteins is considered to be the basis of the phenomenon of wine astringency. Recently, some authors have revealed that some anthocyanins can also contribute to this mouthfeel sensation by interacting with proline rich proteins (PRPs). However, more studies are needed in order to elucidate the affinity of anthocyanins with these proteins.

Etude préliminaire des influences pédoclimatiques sur les caractéristiques quali-quantitatives du cépage aglianico dans une zone de la province de benevento-ltalie

The need to classify the vineyards of an area according to the quality of its wines is not recent, but it is only in the last ten years that studies on the suitability of different areas for the cultivation of vineyard take on an integrated and interdisciplinary character (Boselli, 1991). The definition of the suitability of the environment is thus obtained by making the climatic, pedological, topographical and cultural information interact with the vegetative, productive and qualitative expression of the grape varieties.


Right after the pouring of wine in a glass, a myriad of volatile organic compounds, including ethanol, overwhelm the glass headspace, thus causing the so-called wine’s bouquet [1]. Otherwise, it is worth noting that during wine tasting, most people automatically swirl their glass to enhance the release of aromas in the glass headspace [1]. About a decade ago, Swiss researchers revealed the complex fluid mechanics underlying wine swirling [2]. However, despite mechanically repeated throughout wine tasting, the consequences of glass swirling on the chemical space found in the headspace of wine glasses are still barely known.


Wines made from Muscat d’Alexandria grapes exhibit a high haze risk. For this reason, they are systematically treated with bentonite, on the must and sometimes also on wine. In most oenological labora-tories and in companies (trade, cooperatives, independent winegrowers), the test that is by far the most widely used, on a worldwide scale, remains the heat test at 80°C for 30 minutes to 2 hours (and some-times up to 6 hours). The tannin test (sometimes coupled with a heat treatment) and the Bentotest are still used. In this study, we show that all these tests give much higher estimates of the haze risk than the risk assessed by a 24-48h treatment at 42°C, which represents a heat wave.