Terroir 2020 banner
IVES 9 IVES Conference Series 9 From grapes to sparking wines: Aromas evaluation in a vine-spacing

From grapes to sparking wines: Aromas evaluation in a vine-spacing

Abstract

Aim: Wine aromatic profile is a combination of viticulture and oenological practices and it is related to character, quality, and consumer acceptance. Based on the competition between soil capacity and canopy development, and on the potential to produce sparkling wines at Caldas, in the south region of Minas Gerais (Brazil) (21°55´S and 46°23´W, altitude 1.100m), the aim of this work was the evaluation of the development of aromas (secondary metabolites) from grapes to sparkling wines in a vine-spacing experiment and whether the distance between the vines can influence the aromatic profile of the sparkling wines (final product). 

Methods and Results: The study was conducted with grapes from a 7-year-old vine-spacing experimental vineyard located at Caldas city and their respective must, base wine, and sparkling wine from vintage 2016 of the cultivar Chardonnay (Vitis vinifera L.) grafted onto 1103 Paulsen rootstock, in a clayey soil, and trained on a vertical shoot positioned trellis. Grapes were harvested in the maturity stage for sparkling wines, which were obtained by the traditional method. The volatile compounds in the specimens described were analysed by HS-SPME/GC-MS. Considering the five vine-spacing systems studied (0.5 m, 0.75 m, 1 m, 1.5 m, and 2 m), around 60-80 volatile compounds (secondary metabolites) were identified in the free form for all the specimens studied and PCA analysis showed discrimination among them. Thus, some compounds were slightly higher in must and wines than in berries (e.g., terpenoids, carotenoids). While in the grapes and must the high number of compounds was related to aldehydes and alcohols, in the base and sparkling wines it was related to esters, benzenoids and fatty acids compounds. These compounds resemble pleasant, powerful, floral, fruity odours of apricot and pineapple-banana note, and have an influence on foam.

Conclusions: 

All the processes (grapes metabolism, first fermentation and sur-lie) influenced the development of the aromas. Although the aromatic profile of the five vine-spacing systems sparkling wines was slightly different, a sensorial analysis would be an additional tool to this work to assess if these variations would be noticed by final consumers. 

Significance and Impact of the Study: This study impacts on the knowledge of the products obtained in this terroir, in which conditions one can have a product that pleases the final consumer more and also has a good production. In other words, the consideration for the balance among grape-growing and winemaking practices, productivity/economy, and quality of the final product.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Naíssa Prévide Bernardo1,2*, Aline de Oliveira1,2, Renata Vieira da Mota3, Francisco Mickael Medeiros Câmara3, Isabela Peregrino3, Murillo de Albuquerque Regina3, Eduardo Purgatto1,2

1Food and Experimental Nutrition Department, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
2Food Research Center, University of São Paulo, São Paulo, Brazil 
3Agricultural Research Company of Minas Gerais, Experimental Farm of Caldas, Grape and Wine Technological Center, Caldas – Minas Gerais, Brazil

Contact the author

Keywords

Vitis vinifera, food analysis, aromatic profile, PCA analysis, HS-SPME, GC-MS, Chardonnay grapes, vine-spacing systems

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Ozone treatment: a solution to improve sanitary and physiological quality of vine plant

The vineyard world is faced to a lot of fungal diseases. Grapevine Trunk Diseases (GTD) are some of the major. After exhibiting chronical foliar symptoms, grapevines can die by apoplexy within only few days. A range species of fungi was described to be associated with the apparition of early symptoms of GTD. It is well known that ozone dissolved into water is a powerful disinfectant with no remanence. The main goal of this study was to test the efficiency of this process on different fungal species associated with GTD in vitro and in planta conditions.

Novel table grape varieties as “ready-to-eat” products

Consumers are increasingly requesting ready-to-eat products, which are time-saving and convenient. Offering ready-to-eat fruits and vegetables represents a quick and easy way for any consumer to add healthy products to their diet. In this study, we evaluated the aptitude of several table grape varieties to be included in the processing and packaging lines of ready-to-eat products. The following work was based on the characterization of genetic materials and varietal innovation.

Postharvest ozone treatment in grapevine white cultivars: Effects on grape volatile composition

During postharvest management, the metabolism of fruits remains active and continuous physico-chemical changes occur. Ozone treatment has an elicitor effect on secondary metabolites and the treatment conditions can influence the grape response to the stress (Bellincontro et al., 2017; Botondi et al., 2015). Regarding volatile organic compounds (VOCs), previous studies showed that ozone treatment during postharvest dehydration induces the biosynthesis of terpenes in Moscato bianco grapes (Río Segade et al., 2017). It is well known that grape VOCs greatly influence the organoleptic properties of wines, particularly terpenes in aromatic varieties.

Remote sensing and radiometric techniques applied to vineyards in two regions of Rio Grande do Sul, Brazil

The observation of Earth by satellites has demonstrated the feasibility of establishing differences between plant species, from their spectral features. The reflectance spectrum of vine plants follows this trend, being possible to identify vineyards in satellite images, among other species.

Use of fumaric acid to control pH and inhibit malolactic fermentation in wines

In this audio recording of the IVES science meeting 2022, Antonio Morata (Universidad Politécnica de Madrid, Madrid, Spain) speaks about the use of fumaric acid to control pH and inhibit malolactic fermentation in wines.