Terroir 2020 banner
IVES 9 IVES Conference Series 9 From grapes to sparking wines: Aromas evaluation in a vine-spacing

From grapes to sparking wines: Aromas evaluation in a vine-spacing

Abstract

Aim: Wine aromatic profile is a combination of viticulture and oenological practices and it is related to character, quality, and consumer acceptance. Based on the competition between soil capacity and canopy development, and on the potential to produce sparkling wines at Caldas, in the south region of Minas Gerais (Brazil) (21°55´S and 46°23´W, altitude 1.100m), the aim of this work was the evaluation of the development of aromas (secondary metabolites) from grapes to sparkling wines in a vine-spacing experiment and whether the distance between the vines can influence the aromatic profile of the sparkling wines (final product). 

Methods and Results: The study was conducted with grapes from a 7-year-old vine-spacing experimental vineyard located at Caldas city and their respective must, base wine, and sparkling wine from vintage 2016 of the cultivar Chardonnay (Vitis vinifera L.) grafted onto 1103 Paulsen rootstock, in a clayey soil, and trained on a vertical shoot positioned trellis. Grapes were harvested in the maturity stage for sparkling wines, which were obtained by the traditional method. The volatile compounds in the specimens described were analysed by HS-SPME/GC-MS. Considering the five vine-spacing systems studied (0.5 m, 0.75 m, 1 m, 1.5 m, and 2 m), around 60-80 volatile compounds (secondary metabolites) were identified in the free form for all the specimens studied and PCA analysis showed discrimination among them. Thus, some compounds were slightly higher in must and wines than in berries (e.g., terpenoids, carotenoids). While in the grapes and must the high number of compounds was related to aldehydes and alcohols, in the base and sparkling wines it was related to esters, benzenoids and fatty acids compounds. These compounds resemble pleasant, powerful, floral, fruity odours of apricot and pineapple-banana note, and have an influence on foam.

Conclusions: 

All the processes (grapes metabolism, first fermentation and sur-lie) influenced the development of the aromas. Although the aromatic profile of the five vine-spacing systems sparkling wines was slightly different, a sensorial analysis would be an additional tool to this work to assess if these variations would be noticed by final consumers. 

Significance and Impact of the Study: This study impacts on the knowledge of the products obtained in this terroir, in which conditions one can have a product that pleases the final consumer more and also has a good production. In other words, the consideration for the balance among grape-growing and winemaking practices, productivity/economy, and quality of the final product.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Naíssa Prévide Bernardo1,2*, Aline de Oliveira1,2, Renata Vieira da Mota3, Francisco Mickael Medeiros Câmara3, Isabela Peregrino3, Murillo de Albuquerque Regina3, Eduardo Purgatto1,2

1Food and Experimental Nutrition Department, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
2Food Research Center, University of São Paulo, São Paulo, Brazil 
3Agricultural Research Company of Minas Gerais, Experimental Farm of Caldas, Grape and Wine Technological Center, Caldas – Minas Gerais, Brazil

Contact the author

Keywords

Vitis vinifera, food analysis, aromatic profile, PCA analysis, HS-SPME, GC-MS, Chardonnay grapes, vine-spacing systems

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Volatile and phenolic profiles of wines closed with different stoppers and stored for 30 months

The aim of this study was to evaluate the volatile and phenolic profiles of three red and one rosé wines stored in bottles for 30 months. Four wines were provided by a winery located in South Tyrol

IDENTIFICATION OF NEW RESVERATROL DERIVATIVES FORMED IN RED WINE AND THEIR BIOLOGICAL PROPERTIES

Stilbenes are natural bioactive polyphenols produced by grapevine. Recently, we have reviewed the na- tural presence of these compounds in wines [1]. This study showed that the resveratrol and its glycoside, the piceid, are the most abundant stilbenes in wines. Resveratrol is a well-known stilbene with a wide range of biological activities. Due to its specific structure, resveratrol can be oxidized in wines to form various derivatives including oligomers [2]. In this study, we investigate the resveratrol and piceid transformation in wines.

Early fermentation aroma profiles of grape must produced by various non-Saccharomyces starters

Saccharomyces cerevisiae is the most commonly used yeast species in winemaking. The recent research showed that non-Saccharomyces yeasts as fermentation starters show numerous beneficial features and can be utilized to reduce wine alcoholic strength, regulate acidity, serve as bioprotectants, and finally improve wine aromatic complexity. The majority of published studies on this topic investigated the influence of sequential or co-inoculations of non-Saccharomyces and S. cerevisiae yeasts on the aroma of final wine.

Tracking the origin of Tempranillo Tinto through whole genome resequencing and high-throughput genotyping  

Grapevine cultivars are vegetatively propagated to maintain their varietal characteristics. This process of multiplication leads to spontaneous somatic mutations that can eventually generate a variant phenotype, of potential interest for cultivar improvement and innovation. However, regardless their phenotypic effect, somatic mutations stack in the genome, and they can be used to reveal the origin and dissemination history of ancient cultivars. Here, a stringent somatic variant calling over whole genome resequencing data from 35 ‘Tempranillo Tinto’ clones or old vines from seven Iberian winemaking regions revealed 135 single nucleotide variations (SNVs) shared by some of the clonal lines.

ENRICHMENT OF THE OENOLOGICAL MALDI-TOF/MS PROTEIN SPECTRA DATABASE FOR RELIABLE OENOLOGICAL YEAST AND BACTERIA IDENTIFICATION

The Matrix Assisted Laser Desorption/Ionization–Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) technology is commonly used in food and medical sector to identify yeast or bacteria species isolated from a nutritive culture media. Since a decade, brewery and oenology industries have been attracted to this method which combines fast analysis times, reliability and low cost of analysis. Briefly, this method is based on the comparison of the MALDI-TOF/MS protein spectra of an isolated colony of yeast or bacteria with those contain in a manufacturer’s reference protein spectra database. Initiated in 2015, the creation of the first oenological mass spectra database has proved to be essential for increase quality of species identification.