Terroir 2020 banner
IVES 9 IVES Conference Series 9 From grapes to sparking wines: Aromas evaluation in a vine-spacing

From grapes to sparking wines: Aromas evaluation in a vine-spacing

Abstract

Aim: Wine aromatic profile is a combination of viticulture and oenological practices and it is related to character, quality, and consumer acceptance. Based on the competition between soil capacity and canopy development, and on the potential to produce sparkling wines at Caldas, in the south region of Minas Gerais (Brazil) (21°55´S and 46°23´W, altitude 1.100m), the aim of this work was the evaluation of the development of aromas (secondary metabolites) from grapes to sparkling wines in a vine-spacing experiment and whether the distance between the vines can influence the aromatic profile of the sparkling wines (final product). 

Methods and Results: The study was conducted with grapes from a 7-year-old vine-spacing experimental vineyard located at Caldas city and their respective must, base wine, and sparkling wine from vintage 2016 of the cultivar Chardonnay (Vitis vinifera L.) grafted onto 1103 Paulsen rootstock, in a clayey soil, and trained on a vertical shoot positioned trellis. Grapes were harvested in the maturity stage for sparkling wines, which were obtained by the traditional method. The volatile compounds in the specimens described were analysed by HS-SPME/GC-MS. Considering the five vine-spacing systems studied (0.5 m, 0.75 m, 1 m, 1.5 m, and 2 m), around 60-80 volatile compounds (secondary metabolites) were identified in the free form for all the specimens studied and PCA analysis showed discrimination among them. Thus, some compounds were slightly higher in must and wines than in berries (e.g., terpenoids, carotenoids). While in the grapes and must the high number of compounds was related to aldehydes and alcohols, in the base and sparkling wines it was related to esters, benzenoids and fatty acids compounds. These compounds resemble pleasant, powerful, floral, fruity odours of apricot and pineapple-banana note, and have an influence on foam.

Conclusions: 

All the processes (grapes metabolism, first fermentation and sur-lie) influenced the development of the aromas. Although the aromatic profile of the five vine-spacing systems sparkling wines was slightly different, a sensorial analysis would be an additional tool to this work to assess if these variations would be noticed by final consumers. 

Significance and Impact of the Study: This study impacts on the knowledge of the products obtained in this terroir, in which conditions one can have a product that pleases the final consumer more and also has a good production. In other words, the consideration for the balance among grape-growing and winemaking practices, productivity/economy, and quality of the final product.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Naíssa Prévide Bernardo1,2*, Aline de Oliveira1,2, Renata Vieira da Mota3, Francisco Mickael Medeiros Câmara3, Isabela Peregrino3, Murillo de Albuquerque Regina3, Eduardo Purgatto1,2

1Food and Experimental Nutrition Department, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
2Food Research Center, University of São Paulo, São Paulo, Brazil 
3Agricultural Research Company of Minas Gerais, Experimental Farm of Caldas, Grape and Wine Technological Center, Caldas – Minas Gerais, Brazil

Contact the author

Keywords

Vitis vinifera, food analysis, aromatic profile, PCA analysis, HS-SPME, GC-MS, Chardonnay grapes, vine-spacing systems

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

The temporal sensory interaction between 3-Mercaptohexanol, 3-Mercaptohexyl Acetate and Athanethiol using trata

Volatile sulphur compounds are a group of impact odorants with low odour thresholds that can contribute both positively and negatively to wine aroma. The varietal thiols, 3MH and 3MHA, are known to contribute positive tropical aromas to white wines and are most abundant in Sauvignon Blanc wines. The group of compounds contributing negative aromas are known as reductive sulphur compounds (RSCs) as they add a reductive aroma of asparagus, cooked vegetables and rotten egg to wines. All these compounds play a part in and are a result of the sulphur pathway in the yeast cell during fermentation and therefore attempting to increase the concentration of the varietal thiols may directly influence the concentration of the RSCs. The varietal thiols and the low molecular weight RSCs are highly volatile and therefore their sensory perception can change rapidly over time.

Optimizing vine pruning of Pinot noir and Müller-Thurgau after extreme hail damage

Hail damage can have a major impact on the vine’s physiological growth (defoliation, wood and cane damage) and can lead to significant yield and economic losses.

Practical Aspects of Viticultural Zoning In South Africa

Depuis 1973, une commission statutaire administre la législation qui régit le zonage vitivinicole en Afrique du Sud. La province «Le Cap de l’ouest» cerne toutes les zones viticoles sauf quatre unités. Pour la plupart, le Cap de l’ouest a un climat méditerranéen. Les zones viticoles – qui produisent les «vins d’origine» – sont des régions, des districts, des quartiers et des domaines. Les régions sont vastes, séparées par la topographie, par ex. des chaînes de montagnes et des fleuves. Généralement, chaque région représente une zone climatique. Le climat de chaque district est plus homogène. Les quartiers sont exactement délimités par le climat, la topographie et la géologie. Les domaines sont les plus petits. Chaque domaine doit avoir un seul propriétaire.

Reduce sulfur dioxide addition using a natural polymer chitosan phytate

Most oxidation reactions in wine require iron as a catalyst. The iron content of wine has decreased greatly in recent decades due to the use of low or no release cellar materials; however, in some cases it is still necessary to adopt winemaking practices to remove excess iron from wine, prevent its oxidation, and be able to reduce the addition of sulfur dioxide and other antioxidants.

Characterising the chemical typicality of regional Cabernet Sauvignon wines

Aim: To define the uniqueness of Australian Cabernet Sauvignon wines by evaluation of the chemical composition (volatile aroma and non-volatile constituents) that may drive regional typicity, and to correlate this with comprehensive sensory analysis data to identify the most important compounds driving relevant sensory attributes.