Terroir 2020 banner
IVES 9 IVES Conference Series 9 From grapes to sparking wines: Aromas evaluation in a vine-spacing

From grapes to sparking wines: Aromas evaluation in a vine-spacing

Abstract

Aim: Wine aromatic profile is a combination of viticulture and oenological practices and it is related to character, quality, and consumer acceptance. Based on the competition between soil capacity and canopy development, and on the potential to produce sparkling wines at Caldas, in the south region of Minas Gerais (Brazil) (21°55´S and 46°23´W, altitude 1.100m), the aim of this work was the evaluation of the development of aromas (secondary metabolites) from grapes to sparkling wines in a vine-spacing experiment and whether the distance between the vines can influence the aromatic profile of the sparkling wines (final product). 

Methods and Results: The study was conducted with grapes from a 7-year-old vine-spacing experimental vineyard located at Caldas city and their respective must, base wine, and sparkling wine from vintage 2016 of the cultivar Chardonnay (Vitis vinifera L.) grafted onto 1103 Paulsen rootstock, in a clayey soil, and trained on a vertical shoot positioned trellis. Grapes were harvested in the maturity stage for sparkling wines, which were obtained by the traditional method. The volatile compounds in the specimens described were analysed by HS-SPME/GC-MS. Considering the five vine-spacing systems studied (0.5 m, 0.75 m, 1 m, 1.5 m, and 2 m), around 60-80 volatile compounds (secondary metabolites) were identified in the free form for all the specimens studied and PCA analysis showed discrimination among them. Thus, some compounds were slightly higher in must and wines than in berries (e.g., terpenoids, carotenoids). While in the grapes and must the high number of compounds was related to aldehydes and alcohols, in the base and sparkling wines it was related to esters, benzenoids and fatty acids compounds. These compounds resemble pleasant, powerful, floral, fruity odours of apricot and pineapple-banana note, and have an influence on foam.

Conclusions: 

All the processes (grapes metabolism, first fermentation and sur-lie) influenced the development of the aromas. Although the aromatic profile of the five vine-spacing systems sparkling wines was slightly different, a sensorial analysis would be an additional tool to this work to assess if these variations would be noticed by final consumers. 

Significance and Impact of the Study: This study impacts on the knowledge of the products obtained in this terroir, in which conditions one can have a product that pleases the final consumer more and also has a good production. In other words, the consideration for the balance among grape-growing and winemaking practices, productivity/economy, and quality of the final product.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Naíssa Prévide Bernardo1,2*, Aline de Oliveira1,2, Renata Vieira da Mota3, Francisco Mickael Medeiros Câmara3, Isabela Peregrino3, Murillo de Albuquerque Regina3, Eduardo Purgatto1,2

1Food and Experimental Nutrition Department, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
2Food Research Center, University of São Paulo, São Paulo, Brazil 
3Agricultural Research Company of Minas Gerais, Experimental Farm of Caldas, Grape and Wine Technological Center, Caldas – Minas Gerais, Brazil

Contact the author

Keywords

Vitis vinifera, food analysis, aromatic profile, PCA analysis, HS-SPME, GC-MS, Chardonnay grapes, vine-spacing systems

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Photoprotective extracts from agri-food waste to prevent the effect of light in rosé wines 

Light is responsible for adverse reactions in wine including the formation of unpleasant flavors, loss of vitamins or photodegradation of anthocyanins. Among them, the riboflavin degradation leads to the formation of undesirable volatile compounds, known as light-struck taste. These photo-chemical reactions could be avoided by simply using opaque packaging. However, most rosé wines are kept in transparent bottles due to different commercial reasons. Some agri-food waste extracts have been studied for their photoprotective action which turn to be highly correlated with phenolic content [1].

Methoxypyrazine concentrations in grape-bunch rachis are influenced by rootstock, region, light, and scion.

Methoxypyrazines (MPs) are readily extracted from grape berry and rachis during fermentation and can impart “green” and “herbaceous” sensory attributes to wine. Irrespective of whether MPs, including 3-isobutyl-2-methoxypyrazine (IBMP), 3-isopropyl-2-methoxypyrazine (IPMP), and 3-sec-butyl-2-methoxypyrazine (SBMP), are extracted from berry or other vine material, techniques for remediation of wine with overpowering sensory characters attributable to MPs suffer from poor specificity or produce undesirable sensory outcomes, meaning that alternative control approaches are needed.

Effects of major enological variables on the evolution of the chemical profile in Schiava over the vinification: an experimental design approach

Schiava cv. (germ. Vernatsch) is a group of grape varieties used for winemaking (e.g. Kleinvernatsch-Schiava gentile, Grauvernatsch-Schiava grigia, Edelvernatsch-Schiava grossa) historically reported in Northern Italy, Austria, Germany and Croatia. Beside common phenotypic traits, these varieties have been also hypothesized to share a common geographical origin in Slavonia (Eastern Croatia). Nowadays, Schiava cv. are considered historical grape varieties of northern regions of Italy such as Lombardy, Trentino and South Tyrol. Traditionally widely consumed locally and also exported, over the past decades there has been a steady drop in production of these grapes, although with a parallel increase in wine quality. In this report, the effects of three main enological variables on the chemical components of Schiava produced in South Tyrol (var. Schiava grossa) are investigated from grape to bottle.

Characterization of vine vigor by ground based NDVI measurements

Many farming operations aim at controlling the leaf area of the vine according to its load. There are several techniques, direct and indirect, of estimate of this leaf area in a specific way, but impossible to implement at great scales. These last years, research in airborne and satellite remote sensing made it possible to show that a multispectral index of vegetation, computed from measurements of reflectances (red and near infrared), the « Normalised Difference Vegetation Index » (NDVI), is well correlated to the « Leaf Area Index » (leaf area per unit of ground) of the vine. Nevertheless these methods of acquisition and processing data are rather constraining and complex.

Cover crops in viticulture

In this audio recording of the IVES science meeting 2022, Gonzaga Santesteban (Department of Agronomy, Biotechnology and Food Science, Public University of Navarra (UPNA), Pamplona, Navarra, Spain) speaks about cover crops in viticulture. This presentation is based on 2 original articles accessible for free on OENO One.