Terroir 2020 banner
IVES 9 IVES Conference Series 9 Variety specific thresholds for plant-based indicators of vine nitrogen status

Variety specific thresholds for plant-based indicators of vine nitrogen status

Abstract

Aim: Several plant-based indicators of vine N status are reported in the literature. Among these, yeast assimilable nitrogen in grape must (YAN) and total N concentration of petiole and leaf blades are considered to be reliable indicators and so is the chlorophyll index, measured with a device called N-tester. The N-tester index is used to measure the intensity of the green colour of the leaf blade, and therefore to estimate its chlorophyll content. The aim of this study is to measure the nitrogen content of various grapevine organs (petiole, leaf blade, grape must) and the intensity of the green colour of leaf blades, in order to establish variety specific thresholds for the interpretation of plant-based indicators of vine nitrogen status.

Methods and Results: To study the varietal effect on indicators of vine N status, the latter were measured during 4 years on 35 grapevine varieties grafted on the same rootstock and planted with replicates in an experimental vineyard in the Pessac-Léognan appellation in Bordeaux. The results of N-tester measurements carried out at mid-flowering and mid-véraison were compared with the nitrogen content of leaf blades and petioles at véraison and the concentration of yeast assimilable nitrogen (YAN) in the must at maturity. 

Conclusions: 

Strong varietal and year effects were observed for all indicators. Leaf blade nitrogen showed the lowest variability and YAN the highest. The N-Tester values recorded at mid-flowering were more consistent than those at mid-véraison.

Significance and Impact of the Study: Among the nutrients required by the vine, nitrogen is one of the most important. It is an essential factor in vegetative and reproductive development. Vine nitrogen status influences grape composition and wine quality. In addition, a low concentration of assimilable nitrogen in the must causes fermentation problems because N is one of the essential substrates for yeast growth. Vine N status depends on environmental factors (soil and climate) but can be managed through fertilisation and vineyard floor maintenance. Hence, plant-based indicators for vine nitrogen status are of utmost importance to optimize management practices for obtaining high wine quality and sustainable yields. The data generated by this experiment can help to take into account varietal specific responses to nitrogen availability when establishing thresholds for plant-based indicators of vine N-status. An example is provided for N-tester values at mid-flowering.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Agnès Destrac-Irvine, Elisa Marguerit, Mark Gowdy, Bruno Suter, Julien Fort, Francesco Rinaudi and Cornelis van Leeuwen 

EGFV, Bordeaux Sciences Agro, INRAE, Univ. Bordeaux ISVV, F-33882 Villenave d’Ornon, France

Contact the author

Keywords

Vine nitrogen status, petioles, leaf blades, must

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Effects of grapevine mycorrhizal association on fine root dynamics depend on rootstock genotype

Context and Purpose of the study. Arbuscular mycorrhizal fungi (AMF) symbiosis with grapevines is a key component of vineyard ecosystems.

Release and perception of γ-nonalactone and massoia lactone in the red wine matrix: impact of ethanol and acidity

Climate change (CC) is altering grape/wine composition, challenging wine sensory quality. Rising temperatures increase grape sugar levels, with higher wine ethanol (EtOH) contents, reduce total acidity (TA) converging with increased pH and lead to the accumulation of CC odorous markers such as γ-nonalactone (γ-C9) and massoia lactone (ML).

Exploring the impact of yeast derivatives on aromatic and sensory profiles of white and red wines: a multifactorial analysis

Specific inactivated yeast derivatives (SYDS) are obtained from s. cerevisiae yeasts by various processes (thermal, mechanical, and enzymatic) and have diverse oenological applications to improve wine quality. However, different impacts on wine sensory and aromas were reported, depending on syds types and fractions, wine matrices, and experimental settings. Few works have examined the impact of SYDS on aromas considering also those on wine macromolecules influencing organoleptic properties.

La certificazione ambientale del territorio: fattibilita’ e prospettive

In the next years the territorial environmental certification could become realistic if the following conditions will be fully satisfied:
– the enhancement of the environmental awareness among the industries, the public administration, the authorization bodies, the living people of that territory as well as the tourists and visitors.

Extracellular substances of lactic acid bacteria interests in biotechnological practices applied to enology

Extracellular substances (ECS) represent all molecules outside the cytoplasmic membrane, which are not directly anchored to the cell wall of microorganisms living through a planktonic or biofilm phenotype. They are the high-biomolecular-weight secretions from microorganisms (i.e. extracellular polymeric substances – EPS – proteins, polysaccharides, humic acid, nucleic acid), and the products of cellular lysis and hydrolysis of macromolecules. In addition, some high- and low-molecular-weight organic and inorganic matters from environment can also be adsorbed to the EPS. All can be firmly bound to the cell surface, associated with the EPS matrix of biofilm, or released as being freely diffusing throughout the medium.