Terroir 2020 banner
IVES 9 IVES Conference Series 9 Variety specific thresholds for plant-based indicators of vine nitrogen status

Variety specific thresholds for plant-based indicators of vine nitrogen status

Abstract

Aim: Several plant-based indicators of vine N status are reported in the literature. Among these, yeast assimilable nitrogen in grape must (YAN) and total N concentration of petiole and leaf blades are considered to be reliable indicators and so is the chlorophyll index, measured with a device called N-tester. The N-tester index is used to measure the intensity of the green colour of the leaf blade, and therefore to estimate its chlorophyll content. The aim of this study is to measure the nitrogen content of various grapevine organs (petiole, leaf blade, grape must) and the intensity of the green colour of leaf blades, in order to establish variety specific thresholds for the interpretation of plant-based indicators of vine nitrogen status.

Methods and Results: To study the varietal effect on indicators of vine N status, the latter were measured during 4 years on 35 grapevine varieties grafted on the same rootstock and planted with replicates in an experimental vineyard in the Pessac-Léognan appellation in Bordeaux. The results of N-tester measurements carried out at mid-flowering and mid-véraison were compared with the nitrogen content of leaf blades and petioles at véraison and the concentration of yeast assimilable nitrogen (YAN) in the must at maturity. 

Conclusions: 

Strong varietal and year effects were observed for all indicators. Leaf blade nitrogen showed the lowest variability and YAN the highest. The N-Tester values recorded at mid-flowering were more consistent than those at mid-véraison.

Significance and Impact of the Study: Among the nutrients required by the vine, nitrogen is one of the most important. It is an essential factor in vegetative and reproductive development. Vine nitrogen status influences grape composition and wine quality. In addition, a low concentration of assimilable nitrogen in the must causes fermentation problems because N is one of the essential substrates for yeast growth. Vine N status depends on environmental factors (soil and climate) but can be managed through fertilisation and vineyard floor maintenance. Hence, plant-based indicators for vine nitrogen status are of utmost importance to optimize management practices for obtaining high wine quality and sustainable yields. The data generated by this experiment can help to take into account varietal specific responses to nitrogen availability when establishing thresholds for plant-based indicators of vine N-status. An example is provided for N-tester values at mid-flowering.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Agnès Destrac-Irvine, Elisa Marguerit, Mark Gowdy, Bruno Suter, Julien Fort, Francesco Rinaudi and Cornelis van Leeuwen 

EGFV, Bordeaux Sciences Agro, INRAE, Univ. Bordeaux ISVV, F-33882 Villenave d’Ornon, France

Contact the author

Keywords

Vine nitrogen status, petioles, leaf blades, must

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

METABOLIC INTERACTIONS OF SACCHAROMYCES CEREVISIAE COCULTURES: A WAY TO EXTEND THE AROMA DIVERSITY OF CHARDONNAY WINE

Yeast co-inoculations in winemaking have been investigated in various applications, but most often in the context of modulating the aromatic profiles of wines. Our study aimed to characterize S. cerevisiae interactions and their impact on wine by taking an integrative approach. Three cocultures and corresponding pure cultures of S. cerevisiae were characterized according to their fermentative capacities, the chemical composition and aromatic profile of the associated Chardonnay wines. The various strains studied within the cocultures showed different behaviors regarding their development.

Identification of natural terroir units for viticulture: Stellenbosch, South Africa

Une unité de terroir naturel (UTN) peut être définie comme une unité de terre qui est caractérisée par une relative homogénéité topographique, climatique, géologique et pédologique. De telles unités sont de grande valeur pour mieux comprendre le système terroir/vigne/vin. Le but de cette étude est de caractériser la région viticole du Bottelaryberg. – Simonsberg-Helderberg en utilisant une information digitale existante et d’identifier des UTN en utilisant un Système d’information Géographique.

Soil functional characteristics for qualitative Sangiovese wine production in Tuscany (Italy)

Le but de ce travail est de faire une synthèse des résultats de plusieurs années de recherche en Italie centrale, sur les caractéristiques fonctionnelles du sol pour la production de vin de qualité. Le cépage de référence est le Sangiovese

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.

Catechins, NMR, Huntington’s disease, protein aggregation modulation

Catechins, a subclass of flavonoids widely found in plants and plant-based foods and beverages such as wine and tea, not only exhibit significant antioxidant properties [1], as extensively documented in the literature, but can also inhibit amyloid protein aggregation [2], a key process implicated in the onset of neurodegenerative diseases such as Parkinson’s, Alzheimer’s, and Huntington’s.