Terroir 2020 banner
IVES 9 IVES Conference Series 9 Variety specific thresholds for plant-based indicators of vine nitrogen status

Variety specific thresholds for plant-based indicators of vine nitrogen status

Abstract

Aim: Several plant-based indicators of vine N status are reported in the literature. Among these, yeast assimilable nitrogen in grape must (YAN) and total N concentration of petiole and leaf blades are considered to be reliable indicators and so is the chlorophyll index, measured with a device called N-tester. The N-tester index is used to measure the intensity of the green colour of the leaf blade, and therefore to estimate its chlorophyll content. The aim of this study is to measure the nitrogen content of various grapevine organs (petiole, leaf blade, grape must) and the intensity of the green colour of leaf blades, in order to establish variety specific thresholds for the interpretation of plant-based indicators of vine nitrogen status.

Methods and Results: To study the varietal effect on indicators of vine N status, the latter were measured during 4 years on 35 grapevine varieties grafted on the same rootstock and planted with replicates in an experimental vineyard in the Pessac-Léognan appellation in Bordeaux. The results of N-tester measurements carried out at mid-flowering and mid-véraison were compared with the nitrogen content of leaf blades and petioles at véraison and the concentration of yeast assimilable nitrogen (YAN) in the must at maturity. 

Conclusions: 

Strong varietal and year effects were observed for all indicators. Leaf blade nitrogen showed the lowest variability and YAN the highest. The N-Tester values recorded at mid-flowering were more consistent than those at mid-véraison.

Significance and Impact of the Study: Among the nutrients required by the vine, nitrogen is one of the most important. It is an essential factor in vegetative and reproductive development. Vine nitrogen status influences grape composition and wine quality. In addition, a low concentration of assimilable nitrogen in the must causes fermentation problems because N is one of the essential substrates for yeast growth. Vine N status depends on environmental factors (soil and climate) but can be managed through fertilisation and vineyard floor maintenance. Hence, plant-based indicators for vine nitrogen status are of utmost importance to optimize management practices for obtaining high wine quality and sustainable yields. The data generated by this experiment can help to take into account varietal specific responses to nitrogen availability when establishing thresholds for plant-based indicators of vine N-status. An example is provided for N-tester values at mid-flowering.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Agnès Destrac-Irvine, Elisa Marguerit, Mark Gowdy, Bruno Suter, Julien Fort, Francesco Rinaudi and Cornelis van Leeuwen 

EGFV, Bordeaux Sciences Agro, INRAE, Univ. Bordeaux ISVV, F-33882 Villenave d’Ornon, France

Contact the author

Keywords

Vine nitrogen status, petioles, leaf blades, must

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Chemical and sensory characterization of Xinomavro PDO red wine

Aroma is considered one of the most important factors in determining the quality and character of wine. The relationship between wine character and its volatile composition is recognized by several researchers worldwide. Since these compounds influence the sensory perceptions of consumers, both volatile composition and sensory properties are essential in determining wine aroma characteristics.

AN AUTOMATIC CANOPY COOLING SYSTEM TO COPE WITH THE THERMAL-RADIATIVE STRESSES IN THE PIGNOLETTO WHITE GRAPE

In recent years characterized by hot dry summers, the implementation of innovative irrigation tools in the vineyard represents a crucial challenge to ensure optimal production and to avoid excess of water consumption. It is known that the grapevine reacts to multiple stresses – i.e., high temperatures and wa- ter shortage – through adaptive mechanisms that are detrimental to the yield. Furthermore, this condi- tion is usually aggravated by high solar radiation, which could negatively affect the phenolic composi- tion of the grapes. Therefore, a cooling system has been developed aiming to reduce bunches’ sunburn damage.

Riesling as a model to irrigate white wine grape varieties in arid climates

Regulated deficit irrigation (RDI) is a common viticultural practice for wine grape production. In addition to the potential improvement of water use efficiency, the adoption of this technique favors smaller canopies with higher levels of fruit sun exposure, enhancing quality attributes associated with red wine grapes such as smaller berries with higher tannins and anthocyanins. However, these quality attributes do not necessarily transfer to white wine grapes. The goal of this project was to assess whether partial rootzone drying (PRD) is more suited than RDI to grow high-end white wine grapes in arid climates, especially aromatic varieties, using Riesling as a model.

CONTRIBUTION OF VOLATILE THIOLS TO THE AROMA OF RIESLING WINES FROM THREE REGIONS IN GERMANY AND FRANCE (RHEINGAU, MOSEL, AND ALSACE)

Riesling wines are appreciated for their diverse aromas, ranging from the fruity fresh characters in young vintages to the fragrant empyreumatic notes developed with aging. Wine tasters often refer to Riesling wines as prime examples showcasing terroir, with their typical aroma profiles reflecting the geographical provenance of the wine. However, the molecular basis of the distinctive aromas of these varietal wines from major Riesling producing regions in Europe have not been fully elucidated. In this study, new lights were shed on the chemical characterization and the sensory contribution of volatile thiols to Riesling wines from Rheingau, Mosel, and Alsace. First, Riesling wines (n = 46) from the three regions were collected and assessed for their aroma typicality by an expert panel.

Effects of different organic amendments on soil, vine, grape and wine, in a long-term field experiment in Chinon vineyard (France)

In a long-term experiment carried out in Chinon vineyard (37, France) during 23 years, the effects of several organic amendments were studied on soil, vine, grapes and wine. Four main treatments were compared on a calcareous sandy soil: control without organic amendment, dry crushed pruning wood at 2.1.t-1.ha-1.year-1 (D1), cow manure at 10 t-1. ha-1.year-1 (D1) and cow manure applied at 20 t-1.ha-1.year-1 (D2). D1 levels were calculated to fill the annual humus losses by mineralization.