Terroir 2020 banner
IVES 9 IVES Conference Series 9 Variety specific thresholds for plant-based indicators of vine nitrogen status

Variety specific thresholds for plant-based indicators of vine nitrogen status

Abstract

Aim: Several plant-based indicators of vine N status are reported in the literature. Among these, yeast assimilable nitrogen in grape must (YAN) and total N concentration of petiole and leaf blades are considered to be reliable indicators and so is the chlorophyll index, measured with a device called N-tester. The N-tester index is used to measure the intensity of the green colour of the leaf blade, and therefore to estimate its chlorophyll content. The aim of this study is to measure the nitrogen content of various grapevine organs (petiole, leaf blade, grape must) and the intensity of the green colour of leaf blades, in order to establish variety specific thresholds for the interpretation of plant-based indicators of vine nitrogen status.

Methods and Results: To study the varietal effect on indicators of vine N status, the latter were measured during 4 years on 35 grapevine varieties grafted on the same rootstock and planted with replicates in an experimental vineyard in the Pessac-Léognan appellation in Bordeaux. The results of N-tester measurements carried out at mid-flowering and mid-véraison were compared with the nitrogen content of leaf blades and petioles at véraison and the concentration of yeast assimilable nitrogen (YAN) in the must at maturity. 

Conclusions: 

Strong varietal and year effects were observed for all indicators. Leaf blade nitrogen showed the lowest variability and YAN the highest. The N-Tester values recorded at mid-flowering were more consistent than those at mid-véraison.

Significance and Impact of the Study: Among the nutrients required by the vine, nitrogen is one of the most important. It is an essential factor in vegetative and reproductive development. Vine nitrogen status influences grape composition and wine quality. In addition, a low concentration of assimilable nitrogen in the must causes fermentation problems because N is one of the essential substrates for yeast growth. Vine N status depends on environmental factors (soil and climate) but can be managed through fertilisation and vineyard floor maintenance. Hence, plant-based indicators for vine nitrogen status are of utmost importance to optimize management practices for obtaining high wine quality and sustainable yields. The data generated by this experiment can help to take into account varietal specific responses to nitrogen availability when establishing thresholds for plant-based indicators of vine N-status. An example is provided for N-tester values at mid-flowering.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Agnès Destrac-Irvine, Elisa Marguerit, Mark Gowdy, Bruno Suter, Julien Fort, Francesco Rinaudi and Cornelis van Leeuwen 

EGFV, Bordeaux Sciences Agro, INRAE, Univ. Bordeaux ISVV, F-33882 Villenave d’Ornon, France

Contact the author

Keywords

Vine nitrogen status, petioles, leaf blades, must

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.
First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).

Effects of hormone- and natural-based elicitors at the transcriptomic level in berries of cv. Tempranillo

One of the most important effects of climate change in wine-growing areas is the advance of phenological stages, especially concerning early berry ripening. In the hottest seasons, this results in a lack of synchrony between sugar and phenolic ripeness. In order to cope with this fact, a general effort is being made by researchers and growers aiming at delaying ripening through different strategies. One of the proposed approaches is the application of elicitors. This study aims to assess the effect at the transcriptomic level of the application of three hormone- and natural-based elicitors in Tempranillo.

A applied viticultural zoning, based on the “secteurs de la reference” methodology, in the Cognac vineyard (France)

Dans les Charentes, en réponse à une crise de production du vignoble destiné à la production de Cognac, un plan de diversification viticole pour des vins de pays de qualité est mis en place. Il nécessite une connaissance des sols et de leurs caractéristiques viticoles pour orienter le choix des types de vins et adapter l’itinéraire technique de production.

Environmental protection by means of (“Great”) vitiviniculture zonation

In the paper is discussed the first example of environmental protection, agreed in a wide term sense, by means of vitiviniculture zonations performed in Istria (Croatia) in the area of Butoniga lake

Water status response of Vitis vinifera L. cv Cabernet Sauvignon during the first years within the long-term VineyardFACE (Free Air Carbon dioxide Enrichment) study 

Understanding grapevine responses to increasing atmospheric CO2 (aCO2) concentrations is crucial for assessing the impact of climate change on viticulture. Previously, at the VineyardFACE (Free Air Carbon dioxide Enrichment) experiment in Geisenheim, leaf gas exchange measurements were made as Vitis vinifera cv. Cabernet Sauvignon established from planting (2014 to 2016) under aCO2 or elevated CO2 (eCO2, aCO2 + 20%) concentrations. Contrary to many preceding observations with grapevines and other perennial plant species the young vines showed an increased intrinsic water use efficiency (WUEi) that was mainly associated with an increase in net assimilation (A) rather than a decrease in stomatal conductance (gs) under eCO2.