Terroir 2020 banner
IVES 9 IVES Conference Series 9 Effect of two contrasting soils on grape and wine sensory characteristics in Shiraz

Effect of two contrasting soils on grape and wine sensory characteristics in Shiraz

Abstract

Aims: Berry composition and wine sensory characteristics reflect the origin of grape production and seasonal climatic conditions. The aim of this study was to compare berry and wine sensory characteristics from two contrasting soil types where the vineyard climate, geography, topography, vine and management factors were not different.

Methods and Results: Two adjoining blocks of Shiraz with similar vine age (+/-1 year), identical clone (1654), row orientation (NW, SE) and cordon height were selected for this study. All irrigation, spray and midrow management treatments were identical. Both sites have soils that are texture contrast or duplex brown chromosols. The main distinguishing feature between the two sites being the presence of 10% to 50% ironstone gravel, mainly in the bleached topsoil “E” (or A2) horizon for the “Ironstone” block which is in contrast to the “Sand over clay” block. 

Berry sensory attributes were evaluated using the accepted method of berry sensory assessment (BSA). The method allows for the identification and quantification of berry sensory attributes against standard sensory references by a trained panel. The evaluation of wine sensory attributes was performed using a quantitative descriptive analysis (QDA). Both methods were performed to assess sensory differences in grapes and wine from the two soil types. Berries from the “Ironstone” soil had more intense green/grassy flavour, a higher perception of acidity and greater astringency. This was in contrast to berry samples from the sand over clay soil, which were described as having more intense dried fruit/jammy flavour, a higher perceived sweetness and an elevated toasted flavour. Wines made from fruit from the “Ironstone” soil were found to have more intense red fruit characters, tannin quality and astringency in contrast to the dark fruit, higher colour intensity and confectionary characteristics of the wines made from fruit from “Sand over clay” soils.  Fifty-six soil mineral elements were analysed from each soil horizon, leaf blades, must and wine samples. Results obtained from inductively couple plasma atomic emission spectroscopy (ICP-OES) analysis identified elements some of which were unique to each soil type and some which were in higher concentrations. The differences in the two soils elemental status was translated to leaves, berries and wine from those soils. 

Conclusions: 

Differences were observed in berry and wine sensory characteristics when comparing the fruit harvested from two contrasting soils in close proximity. Soils displayed very similar physical characteristics. Both soils were observed to be texture contrast or duplex brown chromosols. They shared common features of sandy or loamy topsoils (“A” horizons) over brown light clay (LC) to light medium (LMC) “B” horizons with or without highly weathered sandstone in the subsoil or “C” horizon. There was no soil carbonate present at any site and topsoil pH was neutral (pH 6.5-7.5) and decreased slightly to 6.0 in the “B” and “C” horizons.  Root zones, both predicted and observed were not significantly different.

Slight differences were observed between the soils with measures of readily available water (RAW), topsoil depth and a unique layer of gravel in the ironstone soil all of which have been associated in previous research with water movement and plant water availability in soils. Analysis of the chemical composition and concentration of soils, vines, grapes, musts and wines demonstrated distinct differences in the chemical characteristics between the two soil sites. This study was able to investigate soils with different soil chemistries and sensory characteristics for berries and wine in isolation from other known influences including viticultural, environmental, many other soil, and winemaking factors. 

The application of elements to vines in a controlled environment in future work may provide a link between soil chemistry and grape and wine sensory attributes. 

Significance and Impact of the Study: Soil elemental composition is a contentious aspect of terroir especially in relation to the relative importance afforded to climate and soil physical characteristics in previous research. This trial was able to isolate soil for analysis to observe unique elemental compositions in varying concentrations in relation to differences in berry and wine sensory outcomes. The mechanisms by which soil elements might influence sensory outcomes of wines is not widely understood and future research could lead to soils and wines being paired for desired sensory outcomes.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Anthony Hoare*, Michael McLaughlin, Cassandra Collins

School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Urrbrae, SA, Australia

Contact the author

Keywords

Elemental composition, fruit quality, wine quality, soil chemistry

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Determination of Aroma Compounds in Grape Mash under Conditions of Tasting by On-line Near-Infrared Spectroscopy

The production of high-quality wines requires the use of high-quality grapes. Some compounds originating from grapes may negatively influence the odour and flavour of the resulting wine in their original form or as precursors for off-odours and –flavours. Therefore, a rapid evaluation of the grapes directly upon receival at the winery is advantageous. Up to now, grape aroma is mainly evaluated by tasting, however, this leads to subjective results. The use of near-infrared (NIR) spectroscopy allows a rapid, objective and destruction-free analysis without previous sample preparation. Moreover, the measurement can be integrated into an existing process without additional sampling.

Effects of different soil types and soil management on greenhouse gas emissions 

Soil is important in the carbon cycle and the dynamics of greenhouse gases (CO2, CH4 and N2O). Key soil characteristics, such as organic matter content, texture, structure, pH and microbial activity, play a determining role in GHG emissions[1]. The objective of the study is to delimit different types of soil, with different soil management and to be able to verify the differences in CO2, CH4 and N2O emissions. The study was carried out in a vineyard of Bodegas Campo Viejo in Logroño (La Rioja), whose plant material is Vitis vinifera L. cv. Tempranillo.

Contribution du potentiel glycosidique à l’arôme des vins de Grenache noir et Syrah en Vallée du Rhône

Grenache Noir and Syrah are the predominant grape varieties in the French Rhone valley vineyard, and produce wines with well differentiated aromatic notes. This study aimed at investigating the contribution of glycoconjugated precursors to these aromatic specificities, through their analytical profiles and the sensory influence of the odorant compounds they release during wine aging. The aglycones released by enzymatic hydrolysis of glycosidic extracts

Aromatic profile of chardonnay – clone 809: from berry to sparkling wine in an altitude vineyard

ine consumption is linked to the aromatic profile, consumer acceptance, and reflects the viticultural and oenological practices applied, together with the study related to clones is a way to evaluate the adaptation

The impact of grazing by cattle on Vitis vinifera L. cv. Shiraz vegetative growth and metabolite profile

Context and purpose of the study. Globally, vineyard cultivation uses conventional methods to manage pests, diseases and increase yield.