Terroir 2020 banner
IVES 9 IVES Conference Series 9 Effect of two contrasting soils on grape and wine sensory characteristics in Shiraz

Effect of two contrasting soils on grape and wine sensory characteristics in Shiraz

Abstract

Aims: Berry composition and wine sensory characteristics reflect the origin of grape production and seasonal climatic conditions. The aim of this study was to compare berry and wine sensory characteristics from two contrasting soil types where the vineyard climate, geography, topography, vine and management factors were not different.

Methods and Results: Two adjoining blocks of Shiraz with similar vine age (+/-1 year), identical clone (1654), row orientation (NW, SE) and cordon height were selected for this study. All irrigation, spray and midrow management treatments were identical. Both sites have soils that are texture contrast or duplex brown chromosols. The main distinguishing feature between the two sites being the presence of 10% to 50% ironstone gravel, mainly in the bleached topsoil “E” (or A2) horizon for the “Ironstone” block which is in contrast to the “Sand over clay” block. 

Berry sensory attributes were evaluated using the accepted method of berry sensory assessment (BSA). The method allows for the identification and quantification of berry sensory attributes against standard sensory references by a trained panel. The evaluation of wine sensory attributes was performed using a quantitative descriptive analysis (QDA). Both methods were performed to assess sensory differences in grapes and wine from the two soil types. Berries from the “Ironstone” soil had more intense green/grassy flavour, a higher perception of acidity and greater astringency. This was in contrast to berry samples from the sand over clay soil, which were described as having more intense dried fruit/jammy flavour, a higher perceived sweetness and an elevated toasted flavour. Wines made from fruit from the “Ironstone” soil were found to have more intense red fruit characters, tannin quality and astringency in contrast to the dark fruit, higher colour intensity and confectionary characteristics of the wines made from fruit from “Sand over clay” soils.  Fifty-six soil mineral elements were analysed from each soil horizon, leaf blades, must and wine samples. Results obtained from inductively couple plasma atomic emission spectroscopy (ICP-OES) analysis identified elements some of which were unique to each soil type and some which were in higher concentrations. The differences in the two soils elemental status was translated to leaves, berries and wine from those soils. 

Conclusions: 

Differences were observed in berry and wine sensory characteristics when comparing the fruit harvested from two contrasting soils in close proximity. Soils displayed very similar physical characteristics. Both soils were observed to be texture contrast or duplex brown chromosols. They shared common features of sandy or loamy topsoils (“A” horizons) over brown light clay (LC) to light medium (LMC) “B” horizons with or without highly weathered sandstone in the subsoil or “C” horizon. There was no soil carbonate present at any site and topsoil pH was neutral (pH 6.5-7.5) and decreased slightly to 6.0 in the “B” and “C” horizons.  Root zones, both predicted and observed were not significantly different.

Slight differences were observed between the soils with measures of readily available water (RAW), topsoil depth and a unique layer of gravel in the ironstone soil all of which have been associated in previous research with water movement and plant water availability in soils. Analysis of the chemical composition and concentration of soils, vines, grapes, musts and wines demonstrated distinct differences in the chemical characteristics between the two soil sites. This study was able to investigate soils with different soil chemistries and sensory characteristics for berries and wine in isolation from other known influences including viticultural, environmental, many other soil, and winemaking factors. 

The application of elements to vines in a controlled environment in future work may provide a link between soil chemistry and grape and wine sensory attributes. 

Significance and Impact of the Study: Soil elemental composition is a contentious aspect of terroir especially in relation to the relative importance afforded to climate and soil physical characteristics in previous research. This trial was able to isolate soil for analysis to observe unique elemental compositions in varying concentrations in relation to differences in berry and wine sensory outcomes. The mechanisms by which soil elements might influence sensory outcomes of wines is not widely understood and future research could lead to soils and wines being paired for desired sensory outcomes.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Anthony Hoare*, Michael McLaughlin, Cassandra Collins

School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Urrbrae, SA, Australia

Contact the author

Keywords

Elemental composition, fruit quality, wine quality, soil chemistry

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Usefulness and limits of the crop water stress index obtained from leaf temperature for vine water status monitoring

Aims: This work aimed i) to calibrate the accuracy of estimating vineyard water status by crop water stress index (CWSI) compared to stem water potential; ii) to determine the time interval during the day that best correlates to stem water potential and iii) to understand the its usefulness.

Tools for terroir classification for the grape variety Kékfrankos

A 3-year study was carried out in order to evaluate the ecophysiology, yield and quality characteristics of Vitis vinifera L. cv. Kékfrankos (syn. Limberger) at Eger-Nagyeged hill (steep slope) and at Eger-Kőlyuktető (flat) vineyard sites located in the Eger wine region, Hungary.

‘Cabernet Sauvignon’ (Vitis vinifera L.) berry skin flavonol and anthocyanin composition is affected by trellis systems and applied water amounts

Trellis systems are selected in wine grape vineyards to mainly maximize vineyard yield and maintain berry quality. This study was conducted in 2020 and 2021 to evaluate six commonly utilized trellis systems including a vertical shoot positioning (VSP), two relaxed VSPs (VSP60 and VSP80), a single high wire (SH), a high quadrilateral (HQ), and a guyot (GY), combined with three levels of irrigation regimes based on different crop evapotranspiration (ETc) replacements, including a 25% ETc, 50% ETc, and 100% ETc. The results indicated SH yielded the most fruits and accumulated the most total soluble solids (TSS) at harvest in 2020, however, it showed the lowest TSS in the second season. In 2020, SH and HQ showed higher concentrations in most of the anthocyanin derivatives compared to the VSPs. Similar comparisons were noticed in 2021 as well. SH and HQ also accumulated more flavonols in both years compared to other trellis systems. Overall, this study provides information on the efficacy of trellis systems on grapevine yield and berry flavonoid accumulation in a currently warming climate.

Prediction of astringency in red wine using tribology approach to study in-mouth perception

AIM Astringency is described as a ‘dry puckering‐like sensation’ following consumption of tannins1 that affect consumer preference of foods and beverages, including red wine2. To improve the understanding of astringency, which is a complex interaction due to multiple mechanisms occurring simultaneously, further studies are needed. In this view, oral tribology is considered a useful technique for beverage study to evaluate the thin-film lubrication properties of saliva resulting in oral friction‐related sensations3. The aim of this study was to examine the film behavior of selected protein-based fluids under controlled friction conditions, to understand polyphenol-protein interactions involved in the sensation of astringency.

EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

Young white wines are typically released to the market a few months after harvest, to be consumed within a year, when their fresh fruity aromas are still dominant and appealing to modern consumers. Esters, particularly higher alcohol acetates (HAAs) and ethyl esters of fatty acids (EEFAs), play a central role in the fruity expression of young white wines [1]. However, these esters are known to undergo significant hydrolysis during the first months of aging [1, 2].