Terroir 2020 banner
IVES 9 IVES Conference Series 9 Effect of two contrasting soils on grape and wine sensory characteristics in Shiraz

Effect of two contrasting soils on grape and wine sensory characteristics in Shiraz

Abstract

Aims: Berry composition and wine sensory characteristics reflect the origin of grape production and seasonal climatic conditions. The aim of this study was to compare berry and wine sensory characteristics from two contrasting soil types where the vineyard climate, geography, topography, vine and management factors were not different.

Methods and Results: Two adjoining blocks of Shiraz with similar vine age (+/-1 year), identical clone (1654), row orientation (NW, SE) and cordon height were selected for this study. All irrigation, spray and midrow management treatments were identical. Both sites have soils that are texture contrast or duplex brown chromosols. The main distinguishing feature between the two sites being the presence of 10% to 50% ironstone gravel, mainly in the bleached topsoil “E” (or A2) horizon for the “Ironstone” block which is in contrast to the “Sand over clay” block. 

Berry sensory attributes were evaluated using the accepted method of berry sensory assessment (BSA). The method allows for the identification and quantification of berry sensory attributes against standard sensory references by a trained panel. The evaluation of wine sensory attributes was performed using a quantitative descriptive analysis (QDA). Both methods were performed to assess sensory differences in grapes and wine from the two soil types. Berries from the “Ironstone” soil had more intense green/grassy flavour, a higher perception of acidity and greater astringency. This was in contrast to berry samples from the sand over clay soil, which were described as having more intense dried fruit/jammy flavour, a higher perceived sweetness and an elevated toasted flavour. Wines made from fruit from the “Ironstone” soil were found to have more intense red fruit characters, tannin quality and astringency in contrast to the dark fruit, higher colour intensity and confectionary characteristics of the wines made from fruit from “Sand over clay” soils.  Fifty-six soil mineral elements were analysed from each soil horizon, leaf blades, must and wine samples. Results obtained from inductively couple plasma atomic emission spectroscopy (ICP-OES) analysis identified elements some of which were unique to each soil type and some which were in higher concentrations. The differences in the two soils elemental status was translated to leaves, berries and wine from those soils. 

Conclusions: 

Differences were observed in berry and wine sensory characteristics when comparing the fruit harvested from two contrasting soils in close proximity. Soils displayed very similar physical characteristics. Both soils were observed to be texture contrast or duplex brown chromosols. They shared common features of sandy or loamy topsoils (“A” horizons) over brown light clay (LC) to light medium (LMC) “B” horizons with or without highly weathered sandstone in the subsoil or “C” horizon. There was no soil carbonate present at any site and topsoil pH was neutral (pH 6.5-7.5) and decreased slightly to 6.0 in the “B” and “C” horizons.  Root zones, both predicted and observed were not significantly different.

Slight differences were observed between the soils with measures of readily available water (RAW), topsoil depth and a unique layer of gravel in the ironstone soil all of which have been associated in previous research with water movement and plant water availability in soils. Analysis of the chemical composition and concentration of soils, vines, grapes, musts and wines demonstrated distinct differences in the chemical characteristics between the two soil sites. This study was able to investigate soils with different soil chemistries and sensory characteristics for berries and wine in isolation from other known influences including viticultural, environmental, many other soil, and winemaking factors. 

The application of elements to vines in a controlled environment in future work may provide a link between soil chemistry and grape and wine sensory attributes. 

Significance and Impact of the Study: Soil elemental composition is a contentious aspect of terroir especially in relation to the relative importance afforded to climate and soil physical characteristics in previous research. This trial was able to isolate soil for analysis to observe unique elemental compositions in varying concentrations in relation to differences in berry and wine sensory outcomes. The mechanisms by which soil elements might influence sensory outcomes of wines is not widely understood and future research could lead to soils and wines being paired for desired sensory outcomes.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Anthony Hoare*, Michael McLaughlin, Cassandra Collins

School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Urrbrae, SA, Australia

Contact the author

Keywords

Elemental composition, fruit quality, wine quality, soil chemistry

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Adaptability of grapevines to climate change: characterization of phenology and sugar accumulation of 50 varieties, under hot climate conditions

Climate is the major factor influencing the dynamics of the vegetative cycle and can determine the timing of phenological periods. Knowledge of the phenology of varieties, their chronological duration, and thermal requirements, allows not only for the better management of interventions in the vineyard, but also to predict the varieties’ behaviour in a scenario of climate change, giving the wine producer the possibility of selecting the grape varieties that are best adapted to the climatic conditions of a certain terroir. In 2014, Symington Family Estates, Vinhos, established two grape variety libraries in two different places with distinctive climate conditions (Douro Superior, and Cima Corgo), with the commitment of contributing to a deeper agronomic and oenological understanding of some grape varieties, in hot climate conditions. In these research vineyards are represented local varieties that are important in the regional and national viticulture, but also others that have over time been forgotten — as well as five international reference cultivars. From 2017 to 2021, phenological observations have been made three times a week, following a defined protocol, to determine the average dates of budbreak, flowering and veraison. With the climate data of each location, the thermal requirements of each variety and the chronological duration of each phase have been calculated. During maturation, berry samples have been gathered weekly to study the dynamics of sugar accumulation, between other parameters. The data was analysed applying phenological and sugar accumulation models available in literature. The results obtained show significant differences between the varieties over several parameters, from the chronological duration and thermal requirements to complete the various stages of development, to the differences between the two locations, confirming the influence of the climate on phenology and the stages of maturation, in these specific conditions.

Why aren’t farmers using precision viticulture frequently? A case study

n the last years, viticulture precision tools have been made available for farmers for different crops. The feeling that these tools are mandatory on an agriculture of the future have been disseminated by commercial entities but also from policy makers.

Tempranillo in semi-arid tropical climate (Pernambuco-Brazil). Adaptation of some clones and their affinity to different rootstocks

The variety Aragonez (sin. Tempranillo), recently introduced in the San Francisco Valley (9º02′ S; 40º11′ W) has revealed an excellent adaptation, with high potential of quality and yield, even without clonal material.

Authenticating the geographical origin of wine using fluorescence spectroscopy and machine learning

Wine is a luxury product and a global beverage steeped in history and mystery. Over time, various regions have become renowned for the quality of wines they produce, which adds considerable value to the regions and the brands. On the whole, the international wine market is worth many hundreds of billions of dollars, which attracts unscrupulous operators intent on defrauding wine consumers.

La zonazione della Franciacorta: il modello viticolo della DOCG

La Franciacorta è una piccola regione collinare della provincia di Brescia. Il territorio è molto eterogeneo sia dal punto di vista geologico, che geomorfologico e pedologico. Circa 1.000 ettari sono destinati alla produzione di uve Chardonnay, Pinot bianco e Pinot nero per il vino Franciacorta ottenuto unicamente utilizzando la lunga fermentazione naturale in bottiglia.