Terroir 2020 banner
IVES 9 IVES Conference Series 9 Intraregional profiles of varietal thiols and precursors in Sauvignon Blanc juices and wines from the Adelaide Hills

Intraregional profiles of varietal thiols and precursors in Sauvignon Blanc juices and wines from the Adelaide Hills

Abstract

Aims: To investigate the intraregional variation of varietal thiol precursors and free thiols in Sauvignon blanc grape juices and experimental wines arising from the Adelaide Hills Geographical Indication (GI) in South Australia.

Methods and ResultsVitis vinifera L. cv Sauvignon blanc grape parcels (n = 21, approx. 8 kg each, encompassing 5 clones) were hand harvested from different blocks within seven commercial vineyards in the Adelaide Hills GI during the 2018 vintage. Parcels were divided into subsets for winemaking and freezing experiments. Amino acid (AA) and thiol precursor concentrations in juice were determined using high performance liquid chromatography (HPLC) with fluorescence detection and stable isotope dilution assay (SIDA) using HPLC with tandem mass spectrometry (MS/MS), respectively, and free thiols in wine were quantified by SIDA with HPLC-MS/MS, after derivatisation with 4,4’-dithiodipyridine. Intraregional variations in grape ripeness were evident according to total soluble solids content, pH, and titratable acidity, even within single locations or for the same clones. Significant differences in the glutathionylated precursor to 3-sulfanylhexan-1-ol (3-SH) were found among several locations whereas for the cysteinylated variant of 3-SH, one location was distinct from the rest. Variation in precursor concentrations was also noted from different blocks within a single vineyard location but was not dependent on grape ripeness. Fermentations progressed without any obvious relationship to location, and wines that were high in 3-SH were also usually high in 3-sulfanylhexyl acetate (3-SHA). One location had significantly higher levels of thiols in wine despite the juice not being the highest for grape-derived precursors, and also gave a substantial concentration of 4-methyl-4-sulfanylpentan-2-one in comparison to other locations within the GI. The AA profile of juices was found to vary according to location, and certain AAs were strongly correlated to thiol precursor concentrations, but relationships of AAs with free thiols in wine were generally weak. Additionally, enhancements in the concentrations of precursors in juice (up to 19-fold) and free thiols in wine (up to 10-fold) were revealed from freezing whole grape bunches in contrast to using fresh juice.

Conclusions: 

Intraregional variation was noted for thiols in wine, and precursors and amino acids in juice, for 21 Sauvignon blanc samples collected from within the Adelaide Hills region. The effects of terroir were implicated in explaining the differences in grape composition, and the potential interactions among grape amino acids and thiol precursors in berries and thiols in wine were revealed.

Significance and Impact of the Study: Sauvignon blanc is a significant variety produced in the Adelaide Hills GI but no information was available on the effects of location within the GI on grape and wine composition with respect to varietal thiols. This was the first study of intraregional variations of thiol precursors, amino acids, and free thiols in Sauvignon blanc juices and wines that were produced in a consistent manner. A remarkable enhancing effect of freezing was noted for thiol precursors in juice, and importantly, free thiols in wine.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Liang Chen1,a, Dimitra L. Capone1,2, Emily L. Nicholson3, David W. Jeffery1,2*

1 School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1 Glen Osmond, SA 5064, Australia
2 Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, PMB 1 Glen Osmond, SA 5064, Australia
3 CSIRO Agriculture and Food, Locked Bag 2, Glen Osmond, SA 5064, Australia

aPresent address: Institut des Sciences de la Vigne et du Vin, Université de Bordeaux, 210 chemin de Leysotte CS 50008, 33882 Villenave d’Ornon Cedex, France

Contact the author

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Wine tartaric stability based on hydrogel application

Tartrates are salts of tartaric acid that occur naturally in wine and lead to sediments that cause consumers’ rejection. There are currently different treatments to prevent its occurrence, with cold stabilization being the most traditional and well-known method.

The combined effects of climate, soils, and deficit irrigation on yield and quality of Touriga Nacional under high atmospheric demand in the Douro Region

Global warming is one of the biggest environmental, social and economic threats in several viticultural regions. In the Douro Valley, changes are expected in the coming years, namely an increase in temperature and a decrease in precipitation. These changes are likely to have consequences for the production and quality of wine.
The aim of this study was to explore the effects of different soil characteristics combined with several deficit irrigation strategies, managed throughout ETc references and predawn leaf water potentials thresholds, on physiology, yield, and qualitative attributes on the Touriga Nacional variety under years of mild to severe water and heat stress.
The studies were conducted over seven years (2015 to 2021) in two plots of a commercial vineyard located at Quinta do Ataíde (Symington Family Estates) planted in 2011 and 2014 at 170 meters elevation, growing under three water regimes: non-irrigated (NI) and two deficit irrigation strategies (30% and 60% ETc) assessed weekly by Ψpd. The site has an annual rainfall below 500 mm, with high atmospheric demand. Climate data was collected from a weather station, located on site. Berry ripening was followed weekly for fruit analysis. At harvest, yield, vigour and pruning weight per vine were determined from 90 vines by treatment. Each season at veraison the NDVI Index was accessed by a drone. The soils physic-chemistry in the experimental blocs were analysed and grouped by SWHC. Delta C-13 analyses were also performed per treatment in two years.Irrigation had a positive effect on yield per vine, mostly due to an increase in berry and cluster weight, and fertility index through the years. A significant increase in sugar content, colour and phenols was observed with deficit irrigation in some years, but vine vigour related to soil characteristics had by far the greatest impact on quality.

Fingerprinting the origin of rosé wines with a new high throughput polyphenomics method

Wine is a widely consumed alcoholic beverage with a high commercial value. More specifically, the worldwide consumption of rosé wine has increased by 20% since 2002[1]. But because of its high commercial value, it can become a subject of fraud, and authenticity control is necessarily required. More than one hundred polyphenols have been recently quantified in various rosé wines [2]. They are key components defining color, taste and quality of wines. Their amount and composition depend on many different factors such as grape variety, winemaking and age of the wine. In this study, the influence of geographic origin of some rosé French wines was investigated. An original and very fast UPLC-QTOF-MS method was developed and used to predict the geographic origin authenticity of rosé wines.

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time.

IMPACT OF MINERAL AND ORGANIC NITROGEN ADDITION ON ALCOHOLIC FERMENTATION WITH S. CEREVISIAE

During alcoholic fermentation, nitrogen is one of essential nutrient for yeast as it plays a key role in sugar transport and biosynthesis of and wine aromatic compounds (thiols, esters, higher alcohols). The main issue of a lack in yeast assimilable nitrogen (YAN) in winemaking is sluggish or stuck fermentations promoting the growth of alteration species and leads to economic losses. Currently, grape musts are often characterized by low YAN concentration and an increase of sugars concentration due to global warming, making alcoholic fermentations even more difficult. YAN depletion can be corrected by addition of inorganic (ammonia) or organic (yeast derivatives products) nitrogen during alcoholic fermentation.