Terroir 2020 banner
IVES 9 IVES Conference Series 9 An exploration of South Tyrolean Pinot blanc wines and their quality potential in vineyard sites across a range of altitudes

An exploration of South Tyrolean Pinot blanc wines and their quality potential in vineyard sites across a range of altitudes

Abstract

Aim: Pinot Blanc is the third most planted white wine grape in northern Italy’s region of South Tyrol, where small-scale viticultural production permits the examination of the wine’s diverse expressive potential in a small area across a wide range of climatic variables. This study aimed to explore the qualitative potential of Pinot Blanc across a range of climatic variation leading to site-specific terroir expression in a cool climate region.

Methods and Results: Eight Pinot Blanc vineyards with individually unique terroir along the Adige Valley were chosen and monitored over the course of three years and resulting wines underwent chemical and sensory analysis. Selected quality-defining parameters were compared to four defined temperature classes and multiple harvest dates. Temperature class had a mild effect on aromatic expression of Pinot Blanc wines, with organoleptic perception of cooler sites being characterized by higher acidity and citrus aromas, while warmer sites had more prominent pear and banana aromas. Different harvest dates had a stronger impact on cooler sites, while warmer temperature classes showed little difference between time of harvest.

Conclusions:

Vineyard site temperature is less of a principle driver of wine expression in Pinot Blanc than time of harvest, which has a stronger impact on cooler vineyard sites, where achieving a certain technical ripeness is paramount to producing high quality, typical wines. To mitigate the effects of climate change, it may be beneficial for warmer wine producing regions with narrowly defined typicity and limited climactic variation to employ earlier harvest protocols. 

Significance and Impact of the Study: Mountainous regions provide the opportunity for agricultural activity at higher altitudes, where cooler conditions and earlier harvest dates could potentially mitigate the deleterious effects of rising temperatures on grapevines and preserve the typical organoleptic qualities associated with wines from these regions.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Amy Kadison1*, Fenja Hinz1, Samanta Michelini3, Ulrich Pedri1, Eva Überegger2, Valentina Lazazzara3, Peter Robatscher4, Selena Tomada5, Martin Zejfart1, Florian Haas3

1Department of Enology, Laimburg Research Centre, Laimburg 6, 39040, Pfatten/Vadena, South Tyrol, Italy
2Wine and Beverages Laboratory, Laimburg Research Centre, Laimburg 6, 39040, Pfatten/Vadena, South Tyrol, Italy
3Department of Viticulture, Laimburg Research Centre, Laimburg 6, 39040, Pfatten/Vadena, South Tyrol, Italy
4Flavours and Metabolites Laboratory, Laimburg Research Centre at NOI TechPark, A.-Volta-Straße 13/A, 39100 Bozen/Bolzano, South Tyrol, Italy
5Free University of Bozen-Bolzano, Faculty of Science and Technology, Universitätsplatz 5/Piazza Università 5, 39100 Bozen/Bolzano, South Tyrol, Italy

Contact the author

Keywords

Pinot Blanc, climate change, terroir, typicity, sensory profiling

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Specificities of red wines without sulfites: which role for acetaldehyde and diacetyl? A compositional and sensory approach.

Sulfur dioxide is the most commonly used additive in oenology to protect wine from oxidation and microorganisms. Once added to wine SO2 is able to react with carbonyl compounds to form carbonyl bisulfites what affects their reactivity.

Exploring the mechanisms underpinning grapevine susceptibility to esca in a range of Vitis vinifera L. cultivars

Grapevine susceptibility to fungal diseases, including the vascular disease esca, is a major threat for wine productivity and vineyard perennity worldwide.

Implementation of a deep learning-based approach for detecting and localising automatically grapevine leaves with downy mildew symptoms

Grapevine downy mildew is a disease of foliage caused by Oomycete Plasmopara viticola an endoparasite that develops inside grapevine organs and can infect virtually every green organ. Downy mildew is one of the most destructive diseases in wine-growing regions, drastically reducing yield and fruit quality. Traditional manual disease detection relies on farm experts. Human field scouting has been widely used for monitoring the disease progress, however, is costly, laborious, subjective, and often imprecise.

In vitro regeneration of grapevine cv. Aglianico via somatic embryogenesis: preliminary studies for next genome editing applications  

Italy is a rich hub of viticultural biodiversity harboring hundreds of indigenous grape varieties that have adapted over centuries to the diverse climatic and geographic conditions of its regions. Preserving this biodiversity is essential for maintaining a diversified genetic pool, crucial for addressing future challenges such as climate change and emerging plant diseases. Rising temperatures, precipitation pattern variations, and extreme weather events can affect grape ripening, crop quality, and contribute to disease development. Integrated disease management necessitates exploration of novel strategies. Biotechnologies emerge as a significant player in tackling modern viticulture challenges.

Application of Hyper Spectral Imaging for early detection of rachis browning in table grapes

Rachis browning is a common abiotic stress that occurs during postharvest storage, leading to a decrease in commercial value of table grapes and resulting in significant economic losses. Its early detection could enable the implementation of preventive strategies. In this report, we show the feasibility of a non-destructive early detection of browning based on Hyper Spectral Imaging (HSI). Furthermore, rachis samples were subjected to transcriptomic analysis to understand putative pathways causing differences in browning within varieties.