Terroir 2020 banner
IVES 9 IVES Conference Series 9 An exploration of South Tyrolean Pinot blanc wines and their quality potential in vineyard sites across a range of altitudes

An exploration of South Tyrolean Pinot blanc wines and their quality potential in vineyard sites across a range of altitudes

Abstract

Aim: Pinot Blanc is the third most planted white wine grape in northern Italy’s region of South Tyrol, where small-scale viticultural production permits the examination of the wine’s diverse expressive potential in a small area across a wide range of climatic variables. This study aimed to explore the qualitative potential of Pinot Blanc across a range of climatic variation leading to site-specific terroir expression in a cool climate region.

Methods and Results: Eight Pinot Blanc vineyards with individually unique terroir along the Adige Valley were chosen and monitored over the course of three years and resulting wines underwent chemical and sensory analysis. Selected quality-defining parameters were compared to four defined temperature classes and multiple harvest dates. Temperature class had a mild effect on aromatic expression of Pinot Blanc wines, with organoleptic perception of cooler sites being characterized by higher acidity and citrus aromas, while warmer sites had more prominent pear and banana aromas. Different harvest dates had a stronger impact on cooler sites, while warmer temperature classes showed little difference between time of harvest.

Conclusions:

Vineyard site temperature is less of a principle driver of wine expression in Pinot Blanc than time of harvest, which has a stronger impact on cooler vineyard sites, where achieving a certain technical ripeness is paramount to producing high quality, typical wines. To mitigate the effects of climate change, it may be beneficial for warmer wine producing regions with narrowly defined typicity and limited climactic variation to employ earlier harvest protocols. 

Significance and Impact of the Study: Mountainous regions provide the opportunity for agricultural activity at higher altitudes, where cooler conditions and earlier harvest dates could potentially mitigate the deleterious effects of rising temperatures on grapevines and preserve the typical organoleptic qualities associated with wines from these regions.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Amy Kadison1*, Fenja Hinz1, Samanta Michelini3, Ulrich Pedri1, Eva Überegger2, Valentina Lazazzara3, Peter Robatscher4, Selena Tomada5, Martin Zejfart1, Florian Haas3

1Department of Enology, Laimburg Research Centre, Laimburg 6, 39040, Pfatten/Vadena, South Tyrol, Italy
2Wine and Beverages Laboratory, Laimburg Research Centre, Laimburg 6, 39040, Pfatten/Vadena, South Tyrol, Italy
3Department of Viticulture, Laimburg Research Centre, Laimburg 6, 39040, Pfatten/Vadena, South Tyrol, Italy
4Flavours and Metabolites Laboratory, Laimburg Research Centre at NOI TechPark, A.-Volta-Straße 13/A, 39100 Bozen/Bolzano, South Tyrol, Italy
5Free University of Bozen-Bolzano, Faculty of Science and Technology, Universitätsplatz 5/Piazza Università 5, 39100 Bozen/Bolzano, South Tyrol, Italy

Contact the author

Keywords

Pinot Blanc, climate change, terroir, typicity, sensory profiling

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

The role of the environmental factor as a component of the terroir in Spain (A.O. Cigales, NW Spain)

The components and the methodology for characterization of the terroir in Spain have been described by Gómez-Miguel et al.

Identification of important genomic regions controlling resistance to biotic and abiotic stresses in Vitis sp. through QTL meta-analysis

In the context of global change, the environmental conditions are expected to be more stressful for viticulture. The choice of the rootstock may play a crucial role to improve the adaptation of viticulture to new biotic and abiotic threats (Ollat et al., 2016). However, the selection of interesting traits in rootstock breeding programs is complex because of the combination of multiple targets in a same ideotype. In this sense, the integration of studies about the genetic architecture for desired biotic and abiotic response traits allow us to identify genomic regions to combine and those with interesting pleiotropic effects.

Anthocyanin composition and sensory properties of wines from Portuguese and international varieties cultivated in a hot and dry region of Portugal

The study of anthocyanins in wines and grapes has been the subject of numerous research works over the years due to their important role in enology regarding their contribution to wine sensory properties.

Model-assisted analysis of the root traits underlying RSA genotypic diversity in Vitis: a promising approach for rootstock selection?

By dissecting the root system architecture (RSA) into its underpinning components (e.g. root emission, axial growth, radial growth, branching, root direction or tropism) and identifying the relationships between them, functional-structural 3D root models are promising tools for analyzing the diversity and complexity of root system phenotypes with Genotype × Environment interactions. The model parameters are assumed to be synthetic traits, less influenced by the environment, and consequently with less polygenic architectures than the integrative RSA traits they drive. Root models can serve as a basis for in silico development of root system ideotypes by highlighting the developmental processes and parameters that most likely influence RSA fitness.

Vineyard altitude as a climate change adaptation strategy and its effect on Riesling during grapes and wine composition during ripening

Climate is one of the main drivers of spatial and temporal variability in grapevine physiology and therefore a key determinant of grape composition and final wine value. The world has warmed 1.1 °C since pre-industrial times, and the latest IPCC report indicates an additional 0.5 to 1.3 °C of warming by mid-century with continental locations warming at a greater rate than the oceans.