Terroir 2020 banner
IVES 9 IVES Conference Series 9 An exploration of South Tyrolean Pinot blanc wines and their quality potential in vineyard sites across a range of altitudes

An exploration of South Tyrolean Pinot blanc wines and their quality potential in vineyard sites across a range of altitudes

Abstract

Aim: Pinot Blanc is the third most planted white wine grape in northern Italy’s region of South Tyrol, where small-scale viticultural production permits the examination of the wine’s diverse expressive potential in a small area across a wide range of climatic variables. This study aimed to explore the qualitative potential of Pinot Blanc across a range of climatic variation leading to site-specific terroir expression in a cool climate region.

Methods and Results: Eight Pinot Blanc vineyards with individually unique terroir along the Adige Valley were chosen and monitored over the course of three years and resulting wines underwent chemical and sensory analysis. Selected quality-defining parameters were compared to four defined temperature classes and multiple harvest dates. Temperature class had a mild effect on aromatic expression of Pinot Blanc wines, with organoleptic perception of cooler sites being characterized by higher acidity and citrus aromas, while warmer sites had more prominent pear and banana aromas. Different harvest dates had a stronger impact on cooler sites, while warmer temperature classes showed little difference between time of harvest.

Conclusions:

Vineyard site temperature is less of a principle driver of wine expression in Pinot Blanc than time of harvest, which has a stronger impact on cooler vineyard sites, where achieving a certain technical ripeness is paramount to producing high quality, typical wines. To mitigate the effects of climate change, it may be beneficial for warmer wine producing regions with narrowly defined typicity and limited climactic variation to employ earlier harvest protocols. 

Significance and Impact of the Study: Mountainous regions provide the opportunity for agricultural activity at higher altitudes, where cooler conditions and earlier harvest dates could potentially mitigate the deleterious effects of rising temperatures on grapevines and preserve the typical organoleptic qualities associated with wines from these regions.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Amy Kadison1*, Fenja Hinz1, Samanta Michelini3, Ulrich Pedri1, Eva Überegger2, Valentina Lazazzara3, Peter Robatscher4, Selena Tomada5, Martin Zejfart1, Florian Haas3

1Department of Enology, Laimburg Research Centre, Laimburg 6, 39040, Pfatten/Vadena, South Tyrol, Italy
2Wine and Beverages Laboratory, Laimburg Research Centre, Laimburg 6, 39040, Pfatten/Vadena, South Tyrol, Italy
3Department of Viticulture, Laimburg Research Centre, Laimburg 6, 39040, Pfatten/Vadena, South Tyrol, Italy
4Flavours and Metabolites Laboratory, Laimburg Research Centre at NOI TechPark, A.-Volta-Straße 13/A, 39100 Bozen/Bolzano, South Tyrol, Italy
5Free University of Bozen-Bolzano, Faculty of Science and Technology, Universitätsplatz 5/Piazza Università 5, 39100 Bozen/Bolzano, South Tyrol, Italy

Contact the author

Keywords

Pinot Blanc, climate change, terroir, typicity, sensory profiling

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

GrapeBreed4IPM: developing sustainable solutions for viticulture through multi-actor innovation targeting breeding for integrated pest management

According to the World Economic Forum and the European Union’s Biodiversity Strategy for 2030, the loss of biodiversity and the collapse of ecosystems are major threats facing humanity in the future.

The application of soil biological indicators to support soil conservation practices and landscape quality in viticulture

Le but de notre travail a été d’étudier l’influence de différents systèmes de la gestion du sol en viticulture sur des paramètres biologiques de sol comme indicateurs de la protection et de la qualité du sol. La conservation de sol est indispensable pour une viticulture durable et la protection du terroir. Nos résultats ont montré, que la matière

Use of pectinolytic yeast in wine fermentations

The use of pectinolytic enzymes in winemaking is state of the art. These enzymes catalyse the degradation of pectic substances through depolymerization (hydrolases and lyases) and de-esterification. As a result, it supports the extraction of juice and facilitates filtration. It has also been shown in winemaking that the presence of pectinolytic enzymes improves the stability, taste, texture, colour and aroma of products. With regard to enzymes currently applied in winemaking, enzymes derived from filamentous fungi dominate the enzyme industry. Fungal-based pectinolytic enzymes specifically require purification from the culture medium to eliminate unwanted side reactions, which is poorly sustainable. Some non-traditional yeast strains have been reported to exhibit pectinolytic activities. Therefore, the direct use of pectinolytic yeast during wine fermentation process can be an attractive and alternative source for the use of enzymes as input.

Tuning the pH during the fermentation has a strong effect on the wine protein composition and the stability of the resulting white wines

Previous results have shown the impact of the pH on the stability of white wine proteins. In a context of global warming that implies increases in ethanol content and pH

Relationships between sensitivity to high temperature, stomatal conductance and vegetative architecture in a set of grapevine varieties

High temperatures influence plant development and induce a large set of physiological responses at the leaf scale. Stomatal closure is one of the most observed responses to high temperatures. This response is commonly considered as an adaptive strategy to reduce water loss and embolism in the vascular system caused by the high evaporative demand.