Terroir 2020 banner
IVES 9 IVES Conference Series 9 An exploration of South Tyrolean Pinot blanc wines and their quality potential in vineyard sites across a range of altitudes

An exploration of South Tyrolean Pinot blanc wines and their quality potential in vineyard sites across a range of altitudes

Abstract

Aim: Pinot Blanc is the third most planted white wine grape in northern Italy’s region of South Tyrol, where small-scale viticultural production permits the examination of the wine’s diverse expressive potential in a small area across a wide range of climatic variables. This study aimed to explore the qualitative potential of Pinot Blanc across a range of climatic variation leading to site-specific terroir expression in a cool climate region.

Methods and Results: Eight Pinot Blanc vineyards with individually unique terroir along the Adige Valley were chosen and monitored over the course of three years and resulting wines underwent chemical and sensory analysis. Selected quality-defining parameters were compared to four defined temperature classes and multiple harvest dates. Temperature class had a mild effect on aromatic expression of Pinot Blanc wines, with organoleptic perception of cooler sites being characterized by higher acidity and citrus aromas, while warmer sites had more prominent pear and banana aromas. Different harvest dates had a stronger impact on cooler sites, while warmer temperature classes showed little difference between time of harvest.

Conclusions:

Vineyard site temperature is less of a principle driver of wine expression in Pinot Blanc than time of harvest, which has a stronger impact on cooler vineyard sites, where achieving a certain technical ripeness is paramount to producing high quality, typical wines. To mitigate the effects of climate change, it may be beneficial for warmer wine producing regions with narrowly defined typicity and limited climactic variation to employ earlier harvest protocols. 

Significance and Impact of the Study: Mountainous regions provide the opportunity for agricultural activity at higher altitudes, where cooler conditions and earlier harvest dates could potentially mitigate the deleterious effects of rising temperatures on grapevines and preserve the typical organoleptic qualities associated with wines from these regions.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Amy Kadison1*, Fenja Hinz1, Samanta Michelini3, Ulrich Pedri1, Eva Überegger2, Valentina Lazazzara3, Peter Robatscher4, Selena Tomada5, Martin Zejfart1, Florian Haas3

1Department of Enology, Laimburg Research Centre, Laimburg 6, 39040, Pfatten/Vadena, South Tyrol, Italy
2Wine and Beverages Laboratory, Laimburg Research Centre, Laimburg 6, 39040, Pfatten/Vadena, South Tyrol, Italy
3Department of Viticulture, Laimburg Research Centre, Laimburg 6, 39040, Pfatten/Vadena, South Tyrol, Italy
4Flavours and Metabolites Laboratory, Laimburg Research Centre at NOI TechPark, A.-Volta-Straße 13/A, 39100 Bozen/Bolzano, South Tyrol, Italy
5Free University of Bozen-Bolzano, Faculty of Science and Technology, Universitätsplatz 5/Piazza Università 5, 39100 Bozen/Bolzano, South Tyrol, Italy

Contact the author

Keywords

Pinot Blanc, climate change, terroir, typicity, sensory profiling

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Nitrogen requirements of table grape cultivars grown in the san Joaquin valley of California

Ground water in the interior valleys of California is contaminated with nitrates derived from agricultural activities, primarily the over-fertilization of crops.

Comparison of plant nutrients in the soil solution and bleeding sap of grapevine cvs

In this study macro and micro nutrients of plants (N = NH4 + NO3 , P, K, Ca, Na, Zn, Mn, Fe and Cu) were determined both in soil solution and bleeding sap and compared each other. Bleeding sap was collected from the nine varieties of grapevine Cvs. grafted on 5BB rootstock and grown in different soil conditions. For all varieties, plant nutrients content in bleeding sap as higher than in soil solution except for Ca and Na. While in soil solution Ca content was found at 10209 ppm, this value in bleeding sap was 49.20 ppm (Kozak Beyazy), 55.38 ppm (Trakya Ylkeren), 50.37 (Cardinal) and 74.27 ppm (Tekirdaô Çekirdeksizi) respectively. For the same varieties the Na values were as follows : 7.16 ppm (in soil solution) : 4.8, 3.23, 4.21,4.58 ppm (in bleeding sap) respectively. K content in bleeding sap was higher than in soil solution for a few varieties, and lower in some varieties. Traces of Fe and Cu were found in both media.

A viticultural perspective of Meso-scale atmospheric modelling in the Stellenbosch wine growing area, South Africa

La brise de mer et les facteurs climatiques qu’elle entraîne (accélération de la vitesse du vent au cours de l’après midi, augmentation de l’humidité et baisse de la temperature) sont d’un intérêt particulier pour la viticulture.

Data integration via modeling for adaptation to climate change and efficiency breeding in grapevine

Climate can greatly affect grape yield and quality (van Leeuwen et al., 2024). Growing suitable cultivars in a given region and or breed environmental resilient cultivars are essential for maintaining viticulture sustainability, particularly in the face of climate change (Wolkovich et al., 2018).

Adaptability of grapevines to climate change: characterization of phenology and sugar accumulation of 50 varieties, under hot climate conditions

Climate is the major factor influencing the dynamics of the vegetative cycle and can determine the timing of phenological periods. Knowledge of the phenology of varieties, their chronological duration, and thermal requirements, allows not only for the better management of interventions in the vineyard, but also to predict the varieties’ behaviour in a scenario of climate change, giving the wine producer the possibility of selecting the grape varieties that are best adapted to the climatic conditions of a certain terroir. In 2014, Symington Family Estates, Vinhos, established two grape variety libraries in two different places with distinctive climate conditions (Douro Superior, and Cima Corgo), with the commitment of contributing to a deeper agronomic and oenological understanding of some grape varieties, in hot climate conditions. In these research vineyards are represented local varieties that are important in the regional and national viticulture, but also others that have over time been forgotten — as well as five international reference cultivars. From 2017 to 2021, phenological observations have been made three times a week, following a defined protocol, to determine the average dates of budbreak, flowering and veraison. With the climate data of each location, the thermal requirements of each variety and the chronological duration of each phase have been calculated. During maturation, berry samples have been gathered weekly to study the dynamics of sugar accumulation, between other parameters. The data was analysed applying phenological and sugar accumulation models available in literature. The results obtained show significant differences between the varieties over several parameters, from the chronological duration and thermal requirements to complete the various stages of development, to the differences between the two locations, confirming the influence of the climate on phenology and the stages of maturation, in these specific conditions.