Terroir 2020 banner
IVES 9 IVES Conference Series 9 An exploration of South Tyrolean Pinot blanc wines and their quality potential in vineyard sites across a range of altitudes

An exploration of South Tyrolean Pinot blanc wines and their quality potential in vineyard sites across a range of altitudes


Aim: Pinot Blanc is the third most planted white wine grape in northern Italy’s region of South Tyrol, where small-scale viticultural production permits the examination of the wine’s diverse expressive potential in a small area across a wide range of climatic variables. This study aimed to explore the qualitative potential of Pinot Blanc across a range of climatic variation leading to site-specific terroir expression in a cool climate region.

Methods and Results: Eight Pinot Blanc vineyards with individually unique terroir along the Adige Valley were chosen and monitored over the course of three years and resulting wines underwent chemical and sensory analysis. Selected quality-defining parameters were compared to four defined temperature classes and multiple harvest dates. Temperature class had a mild effect on aromatic expression of Pinot Blanc wines, with organoleptic perception of cooler sites being characterized by higher acidity and citrus aromas, while warmer sites had more prominent pear and banana aromas. Different harvest dates had a stronger impact on cooler sites, while warmer temperature classes showed little difference between time of harvest.


Vineyard site temperature is less of a principle driver of wine expression in Pinot Blanc than time of harvest, which has a stronger impact on cooler vineyard sites, where achieving a certain technical ripeness is paramount to producing high quality, typical wines. To mitigate the effects of climate change, it may be beneficial for warmer wine producing regions with narrowly defined typicity and limited climactic variation to employ earlier harvest protocols. 

Significance and Impact of the Study: Mountainous regions provide the opportunity for agricultural activity at higher altitudes, where cooler conditions and earlier harvest dates could potentially mitigate the deleterious effects of rising temperatures on grapevines and preserve the typical organoleptic qualities associated with wines from these regions.


Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video


Amy Kadison1*, Fenja Hinz1, Samanta Michelini3, Ulrich Pedri1, Eva Überegger2, Valentina Lazazzara3, Peter Robatscher4, Selena Tomada5, Martin Zejfart1, Florian Haas3

1Department of Enology, Laimburg Research Centre, Laimburg 6, 39040, Pfatten/Vadena, South Tyrol, Italy
2Wine and Beverages Laboratory, Laimburg Research Centre, Laimburg 6, 39040, Pfatten/Vadena, South Tyrol, Italy
3Department of Viticulture, Laimburg Research Centre, Laimburg 6, 39040, Pfatten/Vadena, South Tyrol, Italy
4Flavours and Metabolites Laboratory, Laimburg Research Centre at NOI TechPark, A.-Volta-Straße 13/A, 39100 Bozen/Bolzano, South Tyrol, Italy
5Free University of Bozen-Bolzano, Faculty of Science and Technology, Universitätsplatz 5/Piazza Università 5, 39100 Bozen/Bolzano, South Tyrol, Italy

Contact the author


Pinot Blanc, climate change, terroir, typicity, sensory profiling


IVES Conference Series | Terroir 2020


Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.