Terroir 2020 banner
IVES 9 IVES Conference Series 9 A global and regional study on winegrowers’ perceptions and adaptations to climate change

A global and regional study on winegrowers’ perceptions and adaptations to climate change

Abstract

Aim: The aim of this study was to explore the current and future state of the wine sector in the context of climate change, where the goal was to obtain greater understanding on winegrowers’ perceptions and adaptations to a changing climate and its associated impacts. The study sought to provide both a global and regional perspective on these issues.

Methods and Results: Translated in 10 different languages, a survey was elaborated and address to winegrowers in 18 wine producing countries. The survey had a structure of 27 quantitative and qualitative questions based on past, present and future growing conditions. With 3625 questionnaires collected, results were compiled to provide a general context for each targeted country, while for the second database specific for France, results were analysed to consider the regional specificities to increase understanding on this subject. At international and regional level, the majority of winegrowers are observing a changing climate, recognising the shifts in temperatures and rainfall patterns. The level of awareness was higher than 80% for most countries. The observed impacts, especially in Europe, relate typically to an earlier onset in phenological stages and deviations in berry composition. However, impacts on vine yield and diseases are highly variable and less significant. Overall, countries such as Spain highlight the detrimental effects on wine quality, compared to countries such as UK perceiving the beneficial influences. These dissimilarities are also illustrated for French wine growing regions. At international and regional level, winegrowers display a strong awareness that continued climate changes are likely. As most are expecting climate changes to continue, winegrowers assigned various adaptation priorities to ensure the sustainability of grape growing and wine production. The latter depending on many contextual factors that shape winegrowers’ vulnerability to climate variations. 

Conclusions: 

Using survey data collected from 18 wine producing countries, study findings have provided important insights on winegrowers’ perceptions and adaptations to a changing climate. Our study contributes to the sustainable development of well-targeted adaptation measures and strategies in the wine sector. 

Significance and Impact of the Study: This study has a strong international dimension, allowing the entire wine industry to gain understanding on these issues on a large geographical scale. Such knowledge can offer key information for policy and research to better assist winegrowers in planning adaptation responses to uncertain long-term climate changes.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Climate change, winegrowers’ perceptions, global wine industry

1ESA, USC 1422 INRA-GRAPPE, Ecole Supérieure d’Agricultures, 55 rue Rabelais, 49007 Angers, France
2INRA, UMR EGFV, ISVV Bordeaux Sciences Agro, 210 Chemin de Leysotte, 33882 Villenave d’Ornon, France
3Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 85084, Lincoln 7647, Christchurch, New Zealand
4CNRS, UMR 6554 LETG, Université Rennes 2, Place du Recteur Henri Le Moal, 35043 Rennes, France

Contact the author

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Premiers résultats d’une étude des caractéristiques analytiques et sensorielles de vins de Syrah selon leur terroir

A set of Syrah plots covering a wide range of terroirs distributed in the vineyards of the Rhone Valley and the Mediterranean South is examined through their oenological and sensory characteristics. The multidimensional analysis of data leads to the following groupings: (1) A group of unstructured wines with a simple aromatic profile dominated by fruity-floral notes; they come from plots where the ripening conditions have been disturbed by unfavorable climatic conditions, or an excess harvest.

Protected Designation of Origin (D.P.O.) Valdepeñas: classification and map of soils

The objective of the work described here is the elaboration of a map of the different types of vineyard soils that to guide the famers in the choice of the most productive vine rootstocks and varieties. 90 vineyard soils profiles were analysed in the entire territory of the Origen Denominations of Valdepeñas. The sampling was carried out in 2018 (June to October) by making a sampling grid, followed by photointerpretation and control in the field. The studied soils can be grouped into 9 different soil types (according to FAO 2006 classification): Leptosols, Regosols, Fluvisols, Gleysols, Cambisols, Calcisols, Luvisols and Anthrosols. A map showing the soil distribution with different type of soils has been made with the ArcGIS program. Regarding to the choice of rootstock, Calcisoles are soils with a high active limestone content, so the rootstocks used in these soils must be resistant to this parameter; Luvisols are deep soils with high clay content, so they will support vigorous rootstocks. Because the cartographic units are composed of two or more subgroups, with are associated in variable proportions, 9 different soil associations have been established; Unit 1: Leptosols, Cambisols and Luvisols (80%, 15% and 5% respectively); Unit 2: Cambisols with Regosols and Luvisols (40%, 30% and 30% respectively); Unit 3: Cambisols and Gleysols with Regosols (40%, 40% and 20% respectively); Unit 4: Regosols with Cambisols, Leptosols and Calcisols (40%, 30%, 15% and 15% respectively); Unit 5: Cambisols, Leptosols, Calcisols and Regosols (25% each of them); Unit 6: Luvisols with Cambisol and Calcisols (80%, 10% and 10% respectively); Unit 7: Luvisols and Calcisols with Cambisols (40%, 40% and 20% respectively); Unit 8: Calcisols with, Cambisols and Luvisols (80%, 10% and 10% respectively); Unit 9: Anthrosols. These study allow to elaborate the first map of vineyard soils of this Protected Designation of Origin in Castilla-La Mancha.

Removal of Fumonisin B1 and B2 from red wine using polymeric substances

The Ability of PVPP (Polyvinylpolypyrrolidone), PVP-DEGMA-TAIC (copolimerization of N-vinyl-2-pyrrolidinone with ethylene glycol dimethacrylate and triallyl isocyanurate) and PAEGDMA
(poly(acrylamide-co-ethylene glycol dimethacrylate)) polymers was tested as removal agents for Fumonisin B1 (FB1) and Fumonisin B2 (FB2) from model solutions and red wine. The polymers removal capacity was checked at three different resident times (2, 8 and 24 hours of contact time between the polymer and the sample), showing no differences in the percentage of FB1 and FB2 removal. Then, different polymer concentrations (1, 5 and 10 mg mL-1) were tested in model solution with and without phenolics (i.e. gallic acid and 4-methylcatechol).

Evaluation of methods used for the isolation and characterization of grape skin and seed, and wine tannins

Validation of the phloroglucinolysis and RP-HPLC method showed selectivity and repeatability within acceptable limits for all investigated matrices. Recovery of polymeric phenols by SPE was also acceptable.

Exploring the influence of grapevine rootstock on yield components 

Yield is an agronomic trait that is critical to the sustained success and profitability of the wine industry. In the context of global warming, overall yield tends to decrease. Rootstock has been identified as a relevant lever for adaptation to changing environmental conditions. The aims of this study are; i) to finely identify the components of the yield influenced by rootstock; ii) to characterise the rootstock × scion interaction; iii) to understand the trade-off between vigour and yield.