Terroir 2010 banner
IVES 9 IVES Conference Series 9 Determination of aromatic characteristics from Syrah and Tempranillo tropical wines elaborated in Northeast Brazil

Determination of aromatic characteristics from Syrah and Tempranillo tropical wines elaborated in Northeast Brazil

Abstract

[English version below]

Dans la region Nord-Est du Brésil, située à la Vallée du São Francisco, localiséee entre les paralleles 8-9º HS, la production de vins tropicaux a commencé il y a une vigntaine d’années. Dans cette région, il est possible d’avoir au minimum deux récoltes par an, car la moyenne de température est de 26 ºC, avec une pluviosité moyenne de 550 mm entre les mois de janvier-avril. Comme la pluviosité n’est pas constante, l’irrigation est donc necéssaire pour la production de raisins de table et de cuve. La recherche scientifique a commencé il y a seulement sept ans, avec des travaux ménés sur les études d’amélioration de la qualité des vins a partir d’introduction de cépages récemment implantés dans ces conditions. Les principaux cépages sont, pour les vins rouges, la Syrah, le Cabernet Sauvignon et le Tempranillo, tandis que pour les blancs, le Chenin blanc, le Moscato Cannelli et le Viognier. Le but de ce travail a été déterminer les composés aromatiques des vins Syrah et Tempranillo, afin de caractériser et d’expliquer la typicité des vins tropicaux de la Vallée du fleuve São Francisco. Les vignobles évalués ont été installés en espalier, les vignes gréfées sur le porte-greffe IAC-766 (106-8 x Vitis caribeae), avec l’irrigation par goutte à goutte. Les vins ont été élaborés en juillet 2008, par la méthode traditionnelle, en cuve en acier de 200 L, la fermentation alcoholique à été réalisée à 25 ºC et la malolactique à 18 ºC. Après la stabilisation des vins au froid, les vins ont été embouteillées et analysés 6 mois après, en utilisant la cromatographie en phase gazeuse. Comme résultats, ont été trouvés des différences intéressantes entre les compositions aromatiques des vins rouges tropicaux Syrah et Tempranillo, ce qui peut expliquer les spécificités de l’expression génétiques de chaque cépage dans ces conditions chaudes du Nord-Est du Brésil, avec des différentes typicités des vins analysés.

In Northeast of Brazil, in the Lower-Middle region of São Francisco Valley, located between parallels 8-9º of the South Hemisphere, tropical wine production has started twenty years ago. In this region it’s possible to have two or three harvests per year, because of annual average air temperature is 26 ºC and normal rainfall of 550 mm, mostly rainfall between November and April. As rainfall distribution is erratic, irrigation practice is required throughout the year to produce winegrapes. The scientific research started only seven years ago and and one of the ongoing research focus is on enhance wine quality according to the use of cultivars introduced in this region. The main cultivars cropped used are Syrah, Cabernet Sauvignon and Tempranillo for red wines, and Chenin blanc, Moscato Canelli and Viognier for white wines. The objective of this work was to determine aromatic compounds of Syrah and Tempranillo red wines to characterize and to explain the typicity of the red wines from these two cultivars in the São Francisco Valley. The vineyards evaluated were arranged on spalier, with vines grafted on IAC-766 (106-8 x Vitis caribeae) and irrigated by drip. Wines were elaborated in July 2008, by using traditional method in 200 L inox tanks , with alcoholic (25 ºC) and malolactic (18 ºC) fermentations. After cold stabilization, wines were bottled and analyzed 6 months later by using gas chromatography. As results, it was found interesting differences on aromatic composition of the Syrah and Tempranillo red wines, which allows to explain about specific genetic expression of each cultivar in the warm conditions of Northeast Brazil, with different wine typicities.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Ana Julia de Brito Araújo (1), Regina Vanderlinde (2), Luciana Leite de Andrade Lima (3), Giuliano Elias Pereira (4)

(1) Étudiante Master UNEB/Embrapa Semiárido
(2) Professeur UCS/Ibravin
(3) Professeur UFRPE
(4) Embrapa Uva e Vinho/Semiárido, BR 428, km 152, BP 23, CEP 56.302-970, Petrolina-PE, Brésil

Contact the author

Keywords

Vitis vinifera L., vins tropicaux, composés aromatiques, typicité, identité régionale
Vitis vinifera L., tropical wines, aromatic compounds, typicity, regional identity

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Swiss program for the creation of fungal disease resistant grape varieties in Switzerland

Grapevine breeding is part of the research program of Agroscope in Switzerland since 1965. From 1965 to 1995, the aim of the Vitis vinifera crosses was to obtain a high resistance to grey rot (Botrytis cinerea), one of the most virulent fungal pathogens in the Swiss vineyard. In 2021, the grape varieties released from this first breeding program covered 936 ha of the 15’000 ha of the Swiss vineyard. In 1996, a second breeding program aimed at obtaining, by classical interspecific hybridization, grape varieties resistant to downy mildew (Plasmopara viticola) and powdery mildew (Erisyphe necator) and less sensitive to grey rot (Botrytis cinerea). In order to accelerate and make the selection process more reliable, an early biochemical test was developed based on the natural defense mechanisms of the vine against downy mildew (stilbene phytoalexins). The synthesis of stilbenes (i.e., resveratrol and its oxidized dimers - and -viniférine) and pterostilbenes (methylated derivative) is among the most efficient induced defense mechanisms of grapevine against fungal pathogens on both the leaves and the clusters.

Heatwaves impacts on grapevine physiology, berry chemistry & wine quality

Climate change impacts on both yields and quality have increased over the past decades, with the effects of extreme climate events having the most dramatic and obvious impacts. Increasing length and intensity of heatwaves associated with increased water stress necessitates a reevaluation of climate change responses of grapevine and, ultimately, a reconsideration of vineyard management practices under future conditions. Here we summarize results from a three-year field trial manipulating irrigation prior to and during heatwave events to assess impacts of water application rates on vine health and physiology, berry chemistry, and wine quality. We also highlight potential mitigation strategies for extreme heat, both in terms of water application, as well as other cultural practices that could be widely applicable.

Could intermittent shading, as produced in agrivoltaics, mitigate global warming effects on grapevine?

Global warning increases evaporative demand and accelerates grapevine phenology. As a consequence, the ripening phase shifts to warmer and drier periods. This results in lower acidity and higher sugar levels in berries, yielding too alcoholic wines with altered organoleptic properties. Agrivoltaics, which combines crop and renewable energy production on the same land using photovoltaic panels, emerged as a promising innovation to counteract these impacts by partially shading the plants.

Selected ion flow tube mass spectrometry: a promising technology for the high throughput phenotyping of grape berry volatilome

Wine grapes breeding has been concentrating a lot of efforts within the grape research community over the last decade. The quick phenotyping of genotype quality traits including aroma composition remains challenging. Selected Ion Flow Tube Mass Spectrometry (SIFT-MS), a technology first available in 2008 and developing rapidly, could be particularly valuable for this usage. The aims of this study were i) to use SIFT-MS, to analyze the whole volatilome from different grape varieties, ii) to assess the ability of this technology to discriminate varieties according to their grape aroma composition, and iii) to study the stability of SIFT-MS signal over maturation to define a sampling strategy.

VITIGEOSS Business Service: Task scheduling optimization in vineyards

Agriculture plantations are complex systems whose performance critically depends on the execution of several types of tasks with precise timing and efficiency to respond to different external factors. This is particularly true for orchards like vineyards, which need to be strictly monitored and regulated, as they are sensitive to diverse types of pests, and climate conditions. In these environments, managing and optimally scheduling the available work force and resources is not trivial and is usually done by teams of senior managers based on their experience. In this regard, having a baseline schedule could help them in the decision process and improve their results, in terms of time and resources spent.