Terroir 2020 banner
IVES 9 IVES Conference Series 9 Unprecedented rainfall in northern Portugal

Unprecedented rainfall in northern Portugal

Abstract

Aim: Climate is arguably one of the most important factors determining the quality of wine from any given grapevine variety. High rainfall during spring can promote growth of the vines but increases the risk of fungal disease, while vineyard operations can be disrupted, as machinery may be prevented from getting in the vineyard owing to muddy soils. Conversely, high rainfall during harvest time (August to October) also bears the potential for severe operational disruption and heavy economic losses. To date, the probability of unprecedented rainfall amounts in spring and the harvest season has not been assessed over northern Portugal, specifically the three wine-growing regions of Vinho Verde, Trás-os-Montes and Porto and Douro DOC. In a situation of higher climatic variability, establishing the probable limits of rainfall variation during critical moments of the vine growth cycle will allow for better readiness of farmers as well as higher resilience of the whole value chain.

Methods and Results: Observed rainfall totals for northern Portugal were extracted from version 21 of the E-OBS dataset. Monthly rainfall totals were archived from a series of 16 month-long hindcasts produced with the Met Office’s decadal prediction system DePreSys3. These hindcasts begin in November of each year, corresponding to the start of each viticultural campaign. The hindcasts are produced from 1980 to 2017, when satellite data are available for model initialisation. Forty ensemble members are available for each start time, providing 1520 (38 × 40) simulations of spring and late summer rainfall totals. The hindcast and observed rainfall totals are considered indistinguishable if the mean, standard deviation, skewness and kurtosis from the observations are within the respective 2.5th–97.5th percentile ranges from 10,000 model bootstraps. It was necessary to shift the modelled mean for spring rainfall owing to a wet bias in the simulations. The model results showed there was a probability of 0.02 ± 0.01 of an unprecedented rainfall event in spring and summer. However, the chance of another year with an exceptionally wet spring and late summer (as happened in 1993) is extremely small.

Conclusions: 

Rainfall totals in northern Portugal over the past 38 years have been very high in a few years, but higher values are possible in the current climate. The chance of another year similar to 1993, when both seasons were exceptionally wet, is very low. The uncertainty in extreme rainfall estimates is considerably reduced when the modelled data are used. A year with rainfall equal to the highest observed amounts in one of these two seasons could be expected to occur just once in the next 30-100 years.

Significance and Impact of the Study: This study is the first to assess the probability of unprecedented rainfall extremes over northern Portugal, allowing for a better estimate of the inherent risk. The results help inform the need for costly adaptation investments, such as better availability of spraying machinery and labour, high-gauge drainage, landslide controls or even abandonment of exposed vineyard areas.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Michael G. Sanderson1*, Marta Teixeira2, Natacha Fontes2, Sara Silva2, António Graça2

1Met Office, Fitzroy Road, Exeter, EX1 3PB, United Kingdom
2Sogrape Vinhos, S.A., Aldeia nova, 4430-809 Avintes, Portugal

Contact the author

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Modeling island and coastal vineyards potential in the context of climate change

Climate change impacts regional and local climates, which in turn affects the world’s wine regions. In the short term, these modifications rises issues about maintaining quality and style of wine, and in a longer term about the suitability of grape varieties and the sustainability of traditional wine regions. Thus, adaptation to climate change represents a major challenge for viticulture. In this context, island and coastal vineyards could become coveted areas due to their specific climatic conditions. In regions subject to warming, the proximity of the sea can moderate extremes temperatures, which could be an advantage for wine. However, coastal and island areas are particular prized spaces and subject to multiple pressures that make the establishment or extension of viticulture complex.
In this perspective, it seems relevant to assess the potentialities of coastal and island areas for viticulture. This contribution will present a spatial optimization model that tends to characterize most suitable agroclimatic patterns in historical or emerging vineyards according to different scenarios. Thanks to an in-depth bibliography a global inventory of coastal and insular vineyards on a worldwide scale has been realized. Relevant criteria have been identified to describe the specificities of these vineyards. They are used as input data in the optimization process, which will optimize some objectives and spatial aspects. According to a predefined scenario, the objectives are set in three main categories associated with climatic characteristics, vineyards characteristics and management strategies. At the end of this optimization process, a series of maps presents the different spatial configurations that maximize the scenario objectives.

EMERGENCE OF INORGANIC PHOSPHONATE RESIDUES IN GRAPEVINE PLANT PARTS, BERRIES AND WINES FROM SOURCES OTHER THAN FOLIAR SPRAYING

Inorganic phosphonates are known to effectively support the control of grapevine downy mildew in vi- ticulture. Their application helps the plant to induce an earlier and more effective pathogen defense. However, inorganic phosphonates have been banned in organic viticulture due to their classification as plant protection products since October 2013. Despite the ban, phosphonate has been recently detected in organic wines.

Exploring the gene regulatory networks of WRKY family in grapevine (Vitis vinifera  L.) using DAP-Seq

The recent development of regulatory genomics has raised increasing interest in plant research since transcriptional regulation of genes plays a pivotal role in many biological processes. By shedding light on the target genes of the various transcription factors (TFs), it is therefore possible to infer the influence they exert on the different molecular mechanisms. In this regard, the attention was focused on WRKYs, a family of TFs almost exclusively found in plant species. In grapevine, WRKYs are involved in several biological processes, playing a key role in berry development, hormonal balance and signalling, biotic and abiotic stresses responses, and secondary metabolites biosynthesis.

Developmental and genetic mechanisms underlying seedlessness in grapevine somatic variants

Seedless table grapes are greatly appreciated for fresh and dry consumption. There is also some interest in seedless winegrapes, because the combination of lower fruit set, smaller berries with higher skin/pulp ratio and looser bunches with the absence of seeds in crushed berries, a possible source of astringent tannins, might also have favorable effects on wine quality.
The gene VviAGL11 has been shown to play a central role in stenospermocarpy in Sultanina, but the molecular bases of other sources of stenospermocarpy as well as of parthenocarpy have not been clarified yet.

Hydraulic redistribution and water movement mechanisms in grapevines

Plants have been shown to redistribute water between root sections and soil layers along a gradient of decreasing water availability. One benefit of this hydraulic redistribution is that water can be transported from roots in wet soil to others in dry soil, delaying the onset of water stress and increasing root longevity in dry environments. Grapevines are thought to redistribute water laterally across the trunk from wet to dry portions of the root system. However, it is unknown whether the phloem contributes to such water redistribution.