Terroir 2020 banner
IVES 9 IVES Conference Series 9 Unprecedented rainfall in northern Portugal

Unprecedented rainfall in northern Portugal

Abstract

Aim: Climate is arguably one of the most important factors determining the quality of wine from any given grapevine variety. High rainfall during spring can promote growth of the vines but increases the risk of fungal disease, while vineyard operations can be disrupted, as machinery may be prevented from getting in the vineyard owing to muddy soils. Conversely, high rainfall during harvest time (August to October) also bears the potential for severe operational disruption and heavy economic losses. To date, the probability of unprecedented rainfall amounts in spring and the harvest season has not been assessed over northern Portugal, specifically the three wine-growing regions of Vinho Verde, Trás-os-Montes and Porto and Douro DOC. In a situation of higher climatic variability, establishing the probable limits of rainfall variation during critical moments of the vine growth cycle will allow for better readiness of farmers as well as higher resilience of the whole value chain.

Methods and Results: Observed rainfall totals for northern Portugal were extracted from version 21 of the E-OBS dataset. Monthly rainfall totals were archived from a series of 16 month-long hindcasts produced with the Met Office’s decadal prediction system DePreSys3. These hindcasts begin in November of each year, corresponding to the start of each viticultural campaign. The hindcasts are produced from 1980 to 2017, when satellite data are available for model initialisation. Forty ensemble members are available for each start time, providing 1520 (38 × 40) simulations of spring and late summer rainfall totals. The hindcast and observed rainfall totals are considered indistinguishable if the mean, standard deviation, skewness and kurtosis from the observations are within the respective 2.5th–97.5th percentile ranges from 10,000 model bootstraps. It was necessary to shift the modelled mean for spring rainfall owing to a wet bias in the simulations. The model results showed there was a probability of 0.02 ± 0.01 of an unprecedented rainfall event in spring and summer. However, the chance of another year with an exceptionally wet spring and late summer (as happened in 1993) is extremely small.

Conclusions: 

Rainfall totals in northern Portugal over the past 38 years have been very high in a few years, but higher values are possible in the current climate. The chance of another year similar to 1993, when both seasons were exceptionally wet, is very low. The uncertainty in extreme rainfall estimates is considerably reduced when the modelled data are used. A year with rainfall equal to the highest observed amounts in one of these two seasons could be expected to occur just once in the next 30-100 years.

Significance and Impact of the Study: This study is the first to assess the probability of unprecedented rainfall extremes over northern Portugal, allowing for a better estimate of the inherent risk. The results help inform the need for costly adaptation investments, such as better availability of spraying machinery and labour, high-gauge drainage, landslide controls or even abandonment of exposed vineyard areas.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Michael G. Sanderson1*, Marta Teixeira2, Natacha Fontes2, Sara Silva2, António Graça2

1Met Office, Fitzroy Road, Exeter, EX1 3PB, United Kingdom
2Sogrape Vinhos, S.A., Aldeia nova, 4430-809 Avintes, Portugal

Contact the author

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Towards a better understanding of the root system diversity and plasticityin young grafted vines using 2D imaging and 3D modelling tools

Three-dimensional functional-structural root architecture models, which decompose the root system architecture (RSA) into elementary developmental processes such as root emission, axial growth, branching patterns and tropism have become useful tools for (i) reconstructing in silico the spatial and temporal dynamics of root systems in a soil volume, (ii) analyzing their genotypic diversity and plasticity to the environment, and (iii) overcoming the bottleneck associated with their visualization and measurement in situ. Here, we present an original work on RSA phenotyping and modelling in grapevine. First, we developed 2D image-based analysis pipelines to quantify morphological and architectural traits in young grafts. Second, we parametrized and validated the 3D root model Archisimple on two rootstock genotypes (RGM, 1103P) grafted with V. vinifera Cabernet-Sauvignon and grown in different controlled conditions (rhizotrons, pots, tubes).

Crown procyanidin quantification in red wines, rosé wines and Port wines

Condensed grape tannins play a major role in the organoleptic properties and quality of red wine. Recently, a new sub-family of macrocyclic condensed tannins has been identified in red wine and named “crown tannins”. Indeed, the first compound of the family identified and characterised by NMR was the crown procyanidin tetramer which is composed of a macrocyclic structure composed of four (-)-epicatechins link together by B-type interflavanoid linkage in the following an alternative sequences of C4-C8 and C4-C6 linkage. The 3D structure of this unusual crown procyanidin family reveals a central cavity in the molecule [1].

Investigating the conceptualization and practices linked to peppery notes in Syrah red wines by French winemakers from different regions

The peppery attribute is often used to describe the aroma of Syrah wines. Rotundone was identified as the main aroma compound responsible for these notes. A significant percentage of anosmic respondents to this molecule was reported in previous studies. However, in most cases, these anosmic respondents, formally tested through three-alternative forced choice (3AFC), frequently declare being able to perceive peppery notes in wines. The main objective of this study was to investigate how anosmic French producers from two different regions conceptualize the peppery notes in Syrah red wines, and how they link it to production practices in comparison with non-anosmic producers.

Influence of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae on malolactic fermentation by Lactobacillus plantarum and Oenococcus oeni in wines

Over the last years, the potential use of non-Saccharomyces yeasts to modulate the production of target metabolites of oenological interest has been well recognized. Among non-Saccharomyces yeasts, Starmerella bacillaris (synonym Candida zemplinina) is considered one of the most promising species to satisfy modern market and consumers preferences due to its peculiar characteristic (enhance glycerol and total acidity contents and reduce ethanol production). Mixed fermentations using Starm. bacillaris and Saccharomyces cerevisiae starter cultures represent a way to modulate metabolites of enological interest, taking advantage of the phenotypic specificities of the former and the ability of the latter to complete the alcoholic fermentation. However, the consumption of nutrients by these species and their produced metabolites may inhibit or stimulate the growth (and malolactic activity) of lactic acid bacteria (LAB).

ASSESSMENT OF ‘DOLCETTO’ GRAPES AND WINES FROM DIFFERENT AREAS OF OVADA DOCG

Dolcetto (Vitis vinifera L.) is one of the traditionally cultivated varieties in Piedmont (north-east Italy). Dolcetto wines have long been associated with local consumption and they are little known internationally. In particular, the Ovada area (south-east Piedmont), even if it represents a small share of the regional PDO Dolcetto production, is one of the oldest and vocated territory, giving wine also suitable for aging. In this study, the basic composition and phenolic content of Dolcetto grapes for Ovada DOCG wines have been investigated in three different vintages (2020-2022), as well as the main aspects of the derived commercial and experimental wines (basic parameters, phenolics, volatile compounds, sensory properties).