Terroir 2020 banner
IVES 9 IVES Conference Series 9 Agroclimatic characterisation of the Portugese wine denominations of origin using a compound index

Agroclimatic characterisation of the Portugese wine denominations of origin using a compound index

Abstract

Aims: This study aims to: (1) characterize the agroclimatic conditions of the Portuguese Denominations of Origin, using a compound index that combines thermal and soil water balance conditions and a high-resolution climatic dataset (~1 km spatial resolution); (2) categorize the main grapevine varieties as a function of this compound index.

Methods and Results: The 50 protected denominations of origin (DOs)/ sub-regions in mainland Portugal are considered in the analysis. The Huglin and dryness indices are computed based on a high-resolution dataset over mainland Portugal and for a baseline period (1981–2015). Principal component analysis is applied to the time-mean spatial patterns of the aforementioned bioclimatic indices and only over the planted vineyard cover areas in each region. This methodology enables the identification of a compound index that can be used to assess the agroclimatic conditions of a given DO / sub-region. Moreover, a set of 44 main grapevine varieties in Portugal is used for assessing their growth conditions. A categorization of these varieties in terms of their current agroclimatic growing conditions is also analyzed based on GIS methods.

Conclusions: 

The present study highlights a wide diversity of agroclimatic conditions in the Portuguese DOs. This heterogeneity contributes to a vast number of different terroirs in the country, which is an important added-value for the winemaking sector, particularly under the ongoing climate change. Furthermore, it is shown that the main grapevine varieties in Portugal are also growing in very different agroclimatic conditions, which enables their categorization based on their current growing bioclimatic conditions.

Significance and Impact of the Study: The results of this study are not only useful for a detailed characterization of the agroclimatic conditions of the Portuguese DO, where there is a considerable lack of meteorological observations, but are also of utmost relevance when planning climate change adaptation measures and risk reduction strategies in the Portuguese winemaking sector. The variety-specific information may also be very helpful for varietal selection, mostly because information of climatic suitability for most of the Portuguese grapevine varieties is still incipient.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

João A. Santos1*, Mónica Santos1, André Fonseca1, Helder Fraga1, Gregory Jones2

1Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Universidade de Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal
2Center for Wine Education, Linfield College, McMinnville, Oregon

Contact the author

Keywords

Denominations of Origin, Huglin Index, Dryness Index, Compound Index, bioclimatic zoning, Portugal

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Characterisation of Sicilian Nero d’Avola grape and wine: A preliminary study

The chemical composition and the sensory characteristics of wine result from dynamic interactions between several factors including grape variety, soil, viticultural techniques, climate conditions, yeasts metabolism, oenological approaches. Recently, Grigg et al.

Investigating winemaking techniques for resistant varieties: the impact of prefermentative steps on must quality

Resistant grape varieties are gaining interest in viticulture due to their resistance to diseases, allowing to drastically reduces pesticides in viticulture [1].

How do KOCs influence wine consumers’ decisions? Based on NLP analysis and questionnaire surveys on Xiaohongshu

In China’s social media-driven marketing landscape, user-generated content (UGC) plays a pivotal role in brand communication and consumer decision-making.

Sustaining wine identity through intra-varietal diversification

With contemporary climate change, cultivated Vitis vinifera L. is at risk as climate is a critical component in defining ecologically fitted plant materiel. While winegrowers can draw on the rich diversity among grapevine varieties to limit expected impacts (Morales-Castilla et al., 2020), replacing a signature variety that has created a sense of local distinctiveness may lead to several challenges. In order to sustain wine identity in uncertain climate outcomes, the study of intra-varietal diversity is important to reflect the adaptive and evolutionary potential of current cultivated varieties. The aim of this ongoing study is to understand to what extent can intra-varietal diversity be a climate change adaptation solution. With a focus on early (Sauvignon blanc, Riesling, Grolleau, Pinot noir) to moderate late (Chenin, Petit Verdot, Cabernet franc) ripening varieties, data was collected for flowering and veraison for the various studied accessions (from conservatory plots) and clones. For these phenological growing stages, heat requirements were established using nearby weather stations (adapted from the GFV model, Parker et al., 2013) and model performances were verified. Climate change projections were then integrated to predict the future behaviour of the intra-varietal diversity. Study findings highlight the strong phenotypic diversity of studied varieties and the importance of diversification to enhance climate change resilience. While model performances may require improvements, this study is the first step towards quantifying heat requirements of different clones and how they can provide adaptation solutions for winegrowers to sustain local wine identity in a global changing climate. As genetic diversity is an ongoing process through point mutations and epigenetic adaptations, perspective work is to explore clonal data from a wide variety of geographic locations.

Managing soil health in vineyards: knowns and unknowns 

The use of soil conservation practices in wine grape production is becoming common throughout the world in response to an increased awareness of the value of soil health to maintain crop productivity and environmental quality. However, little information is available on the meaning of soil health within a viticultural context, and what soil properties should be targeted to achieve both the agronomic and environmental goals of wine grape producers. Conservation practices lead to increases in soil organic matter which may improve soil water retention, and increase soil C content therefore constituting a potential avenue to adapt to droughts and sequester C. Well-known management practices such as the use of cover crops, compost or no-till, although effective, seem to result in highly variable outcomes in soil organic matter and other soil health indicators. This variability is likely associated to the application of the practices in different soils and climates. Thus, integration of soil health building practices needs a thorough understanding of their efficacy under different conditions. Furthermore, additions of soil organic matter could trigger emissions of CO2 and N2O, a potent greenhouse gas that could represent a potential tradeoff of soil conservation practices. Finally, nutrient and water availability may be affected by the increase in soil organic matter having consequences for vine balance and grape quality.