Terroir 2020 banner
IVES 9 IVES Conference Series 9 Agroclimatic characterisation of the Portugese wine denominations of origin using a compound index

Agroclimatic characterisation of the Portugese wine denominations of origin using a compound index

Abstract

Aims: This study aims to: (1) characterize the agroclimatic conditions of the Portuguese Denominations of Origin, using a compound index that combines thermal and soil water balance conditions and a high-resolution climatic dataset (~1 km spatial resolution); (2) categorize the main grapevine varieties as a function of this compound index.

Methods and Results: The 50 protected denominations of origin (DOs)/ sub-regions in mainland Portugal are considered in the analysis. The Huglin and dryness indices are computed based on a high-resolution dataset over mainland Portugal and for a baseline period (1981–2015). Principal component analysis is applied to the time-mean spatial patterns of the aforementioned bioclimatic indices and only over the planted vineyard cover areas in each region. This methodology enables the identification of a compound index that can be used to assess the agroclimatic conditions of a given DO / sub-region. Moreover, a set of 44 main grapevine varieties in Portugal is used for assessing their growth conditions. A categorization of these varieties in terms of their current agroclimatic growing conditions is also analyzed based on GIS methods.

Conclusions: 

The present study highlights a wide diversity of agroclimatic conditions in the Portuguese DOs. This heterogeneity contributes to a vast number of different terroirs in the country, which is an important added-value for the winemaking sector, particularly under the ongoing climate change. Furthermore, it is shown that the main grapevine varieties in Portugal are also growing in very different agroclimatic conditions, which enables their categorization based on their current growing bioclimatic conditions.

Significance and Impact of the Study: The results of this study are not only useful for a detailed characterization of the agroclimatic conditions of the Portuguese DO, where there is a considerable lack of meteorological observations, but are also of utmost relevance when planning climate change adaptation measures and risk reduction strategies in the Portuguese winemaking sector. The variety-specific information may also be very helpful for varietal selection, mostly because information of climatic suitability for most of the Portuguese grapevine varieties is still incipient.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

João A. Santos1*, Mónica Santos1, André Fonseca1, Helder Fraga1, Gregory Jones2

1Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Universidade de Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal
2Center for Wine Education, Linfield College, McMinnville, Oregon

Contact the author

Keywords

Denominations of Origin, Huglin Index, Dryness Index, Compound Index, bioclimatic zoning, Portugal

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Comparative study of the volatile substances and ellagitannins released to wine by barrels of Quercus pyrenaica, Quercus petraea and Quercus alba

The aim of the study was to study the volatile substances and ellagitannins released to wine by barrels of Quercus pyrenaica (Spanish Oak) in comparison with barrels of Quercus petraea (French Oak) and Quercus alba (American Oak) as well as to determine their sensory impact.

Influence of nitrogen supply on colorimetric parameters of Lugana wines

AIM: Color is one of the main qualitative parameters of a wine. As a matter of fact, immediately after having opened a bottle of wine, color, even before aroma and taste, is the first sensorial parameter to be evaluated by the consumer It can change according to various factors depending on the characteristics of the grapes or on the different production and storage processes. This study aims to evaluate the color differences on Lugana wines that are fermented with different yeast and nitrogen supply.

Legacy of land-cover changes on soil erosion and microbiology in Burgundian vineyards

Soils in vineyards are recognized as complex agrosystems whose characteristics reflect complex interactions between natural factors (lithology, climate, slope, biodiversity) and human activities. To date, most of the unknown lies in an incomplete understanding of soil ecosystems, and specifically in the microbial biodiversity even though soil microbiota is involved in many key functions, such as nutrient cycling and carbon sequestration. Soil biological properties are indicative of soil quality. Therefore, understanding how soil communities are related to soil ecosystem functioning is becoming an essential issue for soil strategy conservation. Here, we propose to assess the importance of land-cover history on the present-day microbiological and physico-chemical properties. The studied area was selected in the Burgundian vineyards (Pernand-Vergelesses, Burgundy, France) where land occupation has been reconstructed over the last 40 years. Soil samples were collected in five areas reflecting various land cover history (forest, vineyards, shifting from forest to vineyards). For each area, physico-chemical parameters (pH, C, N, P, grain size) were measured and DNA was extracted to characterize the abundance and diversity of microbial communities. The obtained results show significant differences in the five areas suggesting that present-day microbial molecular biomass and bacterial taxonomic is partly inherited from past land occupation. Over longer period of time, such study of land-uses legacies may help to better assess ecosystem recovery and the impact of management practices for a better soil quality and vineyards sustainability.

Exploring the behavior of alternatives to montmorillonite clays in white wine protein stabilization

Visual clarity in wines is crucial for commercial purposes [1]. Potential protein haze in white wines remains a constant concern in wineries, commonly addressed using bentonite [2].

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation.