Terroir 2020 banner
IVES 9 IVES Conference Series 9 Agroclimatic characterisation of the Portugese wine denominations of origin using a compound index

Agroclimatic characterisation of the Portugese wine denominations of origin using a compound index

Abstract

Aims: This study aims to: (1) characterize the agroclimatic conditions of the Portuguese Denominations of Origin, using a compound index that combines thermal and soil water balance conditions and a high-resolution climatic dataset (~1 km spatial resolution); (2) categorize the main grapevine varieties as a function of this compound index.

Methods and Results: The 50 protected denominations of origin (DOs)/ sub-regions in mainland Portugal are considered in the analysis. The Huglin and dryness indices are computed based on a high-resolution dataset over mainland Portugal and for a baseline period (1981–2015). Principal component analysis is applied to the time-mean spatial patterns of the aforementioned bioclimatic indices and only over the planted vineyard cover areas in each region. This methodology enables the identification of a compound index that can be used to assess the agroclimatic conditions of a given DO / sub-region. Moreover, a set of 44 main grapevine varieties in Portugal is used for assessing their growth conditions. A categorization of these varieties in terms of their current agroclimatic growing conditions is also analyzed based on GIS methods.

Conclusions: 

The present study highlights a wide diversity of agroclimatic conditions in the Portuguese DOs. This heterogeneity contributes to a vast number of different terroirs in the country, which is an important added-value for the winemaking sector, particularly under the ongoing climate change. Furthermore, it is shown that the main grapevine varieties in Portugal are also growing in very different agroclimatic conditions, which enables their categorization based on their current growing bioclimatic conditions.

Significance and Impact of the Study: The results of this study are not only useful for a detailed characterization of the agroclimatic conditions of the Portuguese DO, where there is a considerable lack of meteorological observations, but are also of utmost relevance when planning climate change adaptation measures and risk reduction strategies in the Portuguese winemaking sector. The variety-specific information may also be very helpful for varietal selection, mostly because information of climatic suitability for most of the Portuguese grapevine varieties is still incipient.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

João A. Santos1*, Mónica Santos1, André Fonseca1, Helder Fraga1, Gregory Jones2

1Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Universidade de Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal
2Center for Wine Education, Linfield College, McMinnville, Oregon

Contact the author

Keywords

Denominations of Origin, Huglin Index, Dryness Index, Compound Index, bioclimatic zoning, Portugal

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Metabolomic discrimination of grapevine water status for Chardonnay and Pinot noir

Water status impact in viticulture has been widely explored, as it strongly affects grapevine physiology and grape chemical composition. It is considered as a key component of vitivinicultural terroir. Most of the studies concerning grapevine water status have focused on either physiological traits, or berry compounds, or traits involved in wine quality. Here, the response of grapevine to water availability during the ripening period is assessed through non-targeted metabolomics analysis of grape berries by ultra-high resolution mass spectrometry. The grapevine water status has been assessed during 2 consecutive years (2019 & 2020), through carbon isotope discrimination on juices from berries collected at maturity (21.5 brix approx.) for 2 Vitis vinifera cv. Pinot noir (PN) and Chardonnay (CH). A total of 220 grape juices were collected from 5 countries worldwide (Italy; Argentina; France; Germany; Portugal). Measured δ13C (‰) varied from -28.73 to -22.6 for PN, and from -28.79 to -21.67 for CH. These results also clearly revealed higher water stress for the 2020 vintage. The same grape juices have been analysed by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and Liquid Chromatography coupled to Mass Spectrometry (LC-qTOF-MS), leading to the detection of up to 4500 CHONS containing elemental compositions, and thus likely tens of thousands of individual compounds, which include fatty acids, organic acids, peptides, phenolics, also with high levels of glycosylation. Multivariate statistical analysis revealed that up to 160 elemental compositions, covering the whole range of detected masses (100 –1000 m/z), were significantly correlated to the observed gradients of water status. Examples of chemical markers, which are representative of these complex fingerprints, include various derivatives of the known abscisic acid (ABA), such as phaesic acid or abscisic acid glucose ester, which are significantly correlated with higher water stress, regardless of the variety. Cultivar-specific behaviours could also be identified from these fingerprints. Our results provide an unprecedented representation of the metabolic diversity, which is involved in the water status regulation at the grape level, and which could contribute to a better knowledge of the grapevine mitigation strategy in a climate change context.

Investigating three proximal remote sensing techniques for vineyard yield monitoring

Yield monitoring can provide the winegrowers with information for precise production inputs during the season, thereby, ensuring the best possible harvest. Yield estimation is currently achieved through an intensive process that is destructive and time-consuming. However, remote sensing provides a group of proximal technologies and techniques for a non-destructive and less time-consuming method for yield monitoring.The objective of this study was to analyse three different approaches, for measuring grapevine yield close to harvest.

Extraction of stilbenes from grape cane waste and their possible applications

Vine pruning residues constitute a significant fraction of vitivinicultural waste; in fact, depending on the variety and training system, they can reach 1-5 tons/ha/year.

Screening sensory-directed methodology for the selection of non-saccharomyces wine yeasts based on perceived aroma quality

The present work contributes by developing a rapid sensory-directed methodology for the screening and selection of high quality wines with different sensory profiles Therefore, Verdejo and Tempranillo musts were fermented with 50 different yeasts each under controlled laboratory conditions. Resulting samples were firstly categorized according to five levels of quality by a panel of wine professionals (Sáenz-Navajas, Ballester et al. 2013). Higher quality samples were described by flash profiling by a semi-trained panel
(Valentin, Chollet et al. 2012) and most distinctive samples were screened by gas chromatography-olfactometry (GC-O) (López, Aznar et al. 2002).

Smartphone application use as a tool for water supply management

Uruguay had an average annual rainfall of 1200 mm characterized by a high monthly variability, which generates periods of water deficit and excess. The rational water management