Terroir 2020 banner
IVES 9 IVES Conference Series 9 Microbial metagenomics of vineyard soils and wine terroir

Microbial metagenomics of vineyard soils and wine terroir

Abstract

Aims: The aims of this study were to (i) characterize bacterial and fungal communities in selected Australian vineyard soils and (ii) determine if the soil microbiome composition and diversity varied between different zones within a vineyard. 

Rationale: The soil on which vines are grown has been suggested to impart a unique quality to the grapes and wine due to the physiological responses of the vines to soil type, topography and climatic conditions, in addition to their viticultural management. The influence of bacteria and fungi in wine fermentation is well known but little is known about the effect of soil microbes, other than microbial pathogens, on grape composition or their role in vintage or site (terroir) impacts on grape composition. 

Methods and Results: We investigated the potential relationships between soil microbiome composition measured using a metagenomic approach (16S rRNA and ITS region amplicon and metagenomic sequencing) and inherent spatial variation in grape metabolite composition, specifically the concentration of the ‘impact aroma compound’ rotundone in Shiraz grapes (Vitis vinifera L.) grown in vineyards in the Grampians region of Victoria and in the Adelaide Hills in South Australia. Results from the metagenomics analysis of surface soil samples collected from the previously identified ‘rotundone zones’ in a vineyard indicated marked differences in the genetic diversity and composition of the soil bacterial and fungal microbiomes of these zones. Soils from the high rotundone zone exhibited higher diversity of bacteria, but lower diversity of fungi, compared to the soils in the Low rotundone zone. In addition, the network analysis of the microbial community in the High rotundone zone soils appeared well structured, especially with respect to the bacterial community, compared to that in the Low rotundone zone soils. A few specific taxa/groups of microorganisms e.g. Acidobacteria-GP4 and GP7, Rhizobiales, Burkholdiales, Gaiellales, Alphaproteobacteria and the Nectriaceae and Tremellaceae families of fungi, were associated with the rotundone-based variation. Short-term mulching effects did not seem to mask the rotundone zone-based variation. Predictive functional profiling using 16S rRNA marker gene sequences, FAPROTAX-based analysis indicated differences in functional categories such as manganese oxidation, methylotrophy, methanotrophy, oxidation of sulfur compounds. These findings suggest that the observed taxonomic variation needs to be translated into functional aspects of soil microbiome before mechanistic links to rotundone concentrations can be established.

Conclusions:  

Distinct differences in soil bacterial and fungal community composition and structure in different zones within the same vineyard are associated with different propensities for grape berry rotundone concentration. Also, high rotundone zone soil exhibited a well-connected microbial community network by comparison with the Low rotundone zone soil.

Significance and impact of the Study: These findings of a systematic rotundone zone-based variation in soil microbiomes paves the way to bring together understanding of microbial ecology and viticultural management for improved grape composition and wine flavour (terroir).

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Vadakattu Gupta1, Rob Bramley1, Paul Greenfield2, Julian Yu3, Markus Herderich4

1CSIRO Ag & Food, Urrbrae, SA, Australia 
2CSIRO Energy, North Ryde, NSW, Australia 
3Arizona State University, Arizona, USA 
4AWRI, Urrbrae, SA, Australia

Contact the author

Keywords

Rotundone, microbiome diversity, bacteria, fungi, grapes

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Relationships between sensitivity to high temperature, stomatal conductance and vegetative architecture in a set of grapevine varieties

High temperatures influence plant development and induce a large set of physiological responses at the leaf scale. Stomatal closure is one of the most observed responses to high temperatures. This response is commonly considered as an adaptive strategy to reduce water loss and embolism in the vascular system caused by the high evaporative demand.

Impact of the ‘Pinot’-family on early ripening in cool climate viticulture varieties

‘Pinot Precoce Noir’ (PPN) is an early ripening clone of ‘Pinot Noir’ (PN). The phenological differentiation is visible by an about two weeks earlier onset of veraison. It was found that the early veraison locus Ver1 on chromosome 16, previously identified in ‘Calardis Musqué’, originated from PPN. A highly correlated SSR marker, namely GF16-Ver1, was developed and tested for its ability to molecularly differentiate between PPN and PN as well as its potential to trace individual descendants.

Survey of winegrape irrigation practices in the Sacramento-San Joaquin Valley of California

In California vineyards, irrigation is considered as one of the most important decisions growers will make. Recent research has revealed that decisions of when to begin irrigation and how much water to apply have considerable consequences for final grape quality and hence wine quality. However, it is unclear whether and to what extent the average winegrape grower uses objective data to begin irrigating or to determine the amount of water to apply.

Raffinose: a sweet solution for grapevine drought tolerance

Water tolerance in plants is often associated with the accumulation of osmotic protectants, which are secondary metabolites that can help the plant to cope with water stress. One of the key osmotic protectants is a sugar called Raffinose, which is synthesized by a family of enzymes called Raffinose synthases. In this work, we focused on one of these enzymes, VviRAF2, which is a gene that shows different expression levels and genetic variants (SNPs) among different grapevine cultivars, ranging from tolerant to susceptible to water stress, and the transcription factors that may regulate the expression of this gene family.

Effects of graft quality on growth and grapevine-water relations

Climate change is challenging viticulture worldwide compromising its sustainability due to warmer temperatures and the increased frequency of extreme events. Grafting Vitis vinifera L.