Terroir 2020 banner
IVES 9 IVES Conference Series 9 Microbial metagenomics of vineyard soils and wine terroir

Microbial metagenomics of vineyard soils and wine terroir

Abstract

Aims: The aims of this study were to (i) characterize bacterial and fungal communities in selected Australian vineyard soils and (ii) determine if the soil microbiome composition and diversity varied between different zones within a vineyard. 

Rationale: The soil on which vines are grown has been suggested to impart a unique quality to the grapes and wine due to the physiological responses of the vines to soil type, topography and climatic conditions, in addition to their viticultural management. The influence of bacteria and fungi in wine fermentation is well known but little is known about the effect of soil microbes, other than microbial pathogens, on grape composition or their role in vintage or site (terroir) impacts on grape composition. 

Methods and Results: We investigated the potential relationships between soil microbiome composition measured using a metagenomic approach (16S rRNA and ITS region amplicon and metagenomic sequencing) and inherent spatial variation in grape metabolite composition, specifically the concentration of the ‘impact aroma compound’ rotundone in Shiraz grapes (Vitis vinifera L.) grown in vineyards in the Grampians region of Victoria and in the Adelaide Hills in South Australia. Results from the metagenomics analysis of surface soil samples collected from the previously identified ‘rotundone zones’ in a vineyard indicated marked differences in the genetic diversity and composition of the soil bacterial and fungal microbiomes of these zones. Soils from the high rotundone zone exhibited higher diversity of bacteria, but lower diversity of fungi, compared to the soils in the Low rotundone zone. In addition, the network analysis of the microbial community in the High rotundone zone soils appeared well structured, especially with respect to the bacterial community, compared to that in the Low rotundone zone soils. A few specific taxa/groups of microorganisms e.g. Acidobacteria-GP4 and GP7, Rhizobiales, Burkholdiales, Gaiellales, Alphaproteobacteria and the Nectriaceae and Tremellaceae families of fungi, were associated with the rotundone-based variation. Short-term mulching effects did not seem to mask the rotundone zone-based variation. Predictive functional profiling using 16S rRNA marker gene sequences, FAPROTAX-based analysis indicated differences in functional categories such as manganese oxidation, methylotrophy, methanotrophy, oxidation of sulfur compounds. These findings suggest that the observed taxonomic variation needs to be translated into functional aspects of soil microbiome before mechanistic links to rotundone concentrations can be established.

Conclusions:  

Distinct differences in soil bacterial and fungal community composition and structure in different zones within the same vineyard are associated with different propensities for grape berry rotundone concentration. Also, high rotundone zone soil exhibited a well-connected microbial community network by comparison with the Low rotundone zone soil.

Significance and impact of the Study: These findings of a systematic rotundone zone-based variation in soil microbiomes paves the way to bring together understanding of microbial ecology and viticultural management for improved grape composition and wine flavour (terroir).

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Vadakattu Gupta1, Rob Bramley1, Paul Greenfield2, Julian Yu3, Markus Herderich4

1CSIRO Ag & Food, Urrbrae, SA, Australia 
2CSIRO Energy, North Ryde, NSW, Australia 
3Arizona State University, Arizona, USA 
4AWRI, Urrbrae, SA, Australia

Contact the author

Keywords

Rotundone, microbiome diversity, bacteria, fungi, grapes

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison. In all solutions were added 1ml/l of Tween 80 ® surfactant.

Comparing vineyard irrigation management based in two different approaches: vegetation indices and SIMDualKc model

Water scarcity, high air temperatures, high vapor pressure deficit, and increasing frequency and intensity of extreme climatic events, namely heat waves, exert huge pressure on viticulture, as is the case of Mediterranean climates. Therefore, farmers rely more and more on irrigation to overcome these constraints. Deficit irrigation is a proved strategy to optimize irrigation efficiency and wine quality. The present study intends to demonstrate the application of precision techniques, namely remote sensing derived vegetation indices (VI) and an open source software, SIMDualKc, to compute crop evapotranspiration using the dual crop coefficient approach (Kcb + Ke), for deficit irrigation management.

Enological technics to enhance the aromatic qualities of white spirits 

Eugenol has been identified as a quality marker in armagnac white spirits. In particular, those produced from the Baco blanc variety, the only hybrid variety authorised in a French PDO, bred since 1898 from noah (vitis labrusca x v.riparia) and folle blanche (v. Vinifera). The varietal compound of Baco blanc, eugenol has many original properties.

Identification of natural terroir units for viticulture: Stellenbosch, South Africa

Une unité de terroir naturel (UTN) peut être définie comme une unité de terre qui est caractérisée par une relative homogénéité topographique, climatique, géologique et pédologique. De telles unités sont de grande valeur pour mieux comprendre le système terroir/vigne/vin. Le but de cette étude est de caractériser la région viticole du Bottelaryberg. – Simonsberg-Helderberg en utilisant une information digitale existante et d’identifier des UTN en utilisant un Système d’information Géographique.

A novel dataset and deep learning object detection benchmark for grapevine pest surveillance

Flavescence dorée (FD) stands out as a significant grapevine disease with severe implications for vineyards. The American grapevine leafhopper (Scaphoideus titanus) serves as the primary vector, transmitting the pathogen that causes yield losses and elevated costs linked to uprooting and replanting. Another potential vector of FD is the mosaic leafhopper, Orientus ishidae, commonly found in agroecosystems. The current monitoring approach involves periodic human identification of chromotropic traps, a labor-intensive and time-consuming process.