Terroir 2020 banner
IVES 9 IVES Conference Series 9 Microbial metagenomics of vineyard soils and wine terroir

Microbial metagenomics of vineyard soils and wine terroir

Abstract

Aims: The aims of this study were to (i) characterize bacterial and fungal communities in selected Australian vineyard soils and (ii) determine if the soil microbiome composition and diversity varied between different zones within a vineyard. 

Rationale: The soil on which vines are grown has been suggested to impart a unique quality to the grapes and wine due to the physiological responses of the vines to soil type, topography and climatic conditions, in addition to their viticultural management. The influence of bacteria and fungi in wine fermentation is well known but little is known about the effect of soil microbes, other than microbial pathogens, on grape composition or their role in vintage or site (terroir) impacts on grape composition. 

Methods and Results: We investigated the potential relationships between soil microbiome composition measured using a metagenomic approach (16S rRNA and ITS region amplicon and metagenomic sequencing) and inherent spatial variation in grape metabolite composition, specifically the concentration of the ‘impact aroma compound’ rotundone in Shiraz grapes (Vitis vinifera L.) grown in vineyards in the Grampians region of Victoria and in the Adelaide Hills in South Australia. Results from the metagenomics analysis of surface soil samples collected from the previously identified ‘rotundone zones’ in a vineyard indicated marked differences in the genetic diversity and composition of the soil bacterial and fungal microbiomes of these zones. Soils from the high rotundone zone exhibited higher diversity of bacteria, but lower diversity of fungi, compared to the soils in the Low rotundone zone. In addition, the network analysis of the microbial community in the High rotundone zone soils appeared well structured, especially with respect to the bacterial community, compared to that in the Low rotundone zone soils. A few specific taxa/groups of microorganisms e.g. Acidobacteria-GP4 and GP7, Rhizobiales, Burkholdiales, Gaiellales, Alphaproteobacteria and the Nectriaceae and Tremellaceae families of fungi, were associated with the rotundone-based variation. Short-term mulching effects did not seem to mask the rotundone zone-based variation. Predictive functional profiling using 16S rRNA marker gene sequences, FAPROTAX-based analysis indicated differences in functional categories such as manganese oxidation, methylotrophy, methanotrophy, oxidation of sulfur compounds. These findings suggest that the observed taxonomic variation needs to be translated into functional aspects of soil microbiome before mechanistic links to rotundone concentrations can be established.

Conclusions:  

Distinct differences in soil bacterial and fungal community composition and structure in different zones within the same vineyard are associated with different propensities for grape berry rotundone concentration. Also, high rotundone zone soil exhibited a well-connected microbial community network by comparison with the Low rotundone zone soil.

Significance and impact of the Study: These findings of a systematic rotundone zone-based variation in soil microbiomes paves the way to bring together understanding of microbial ecology and viticultural management for improved grape composition and wine flavour (terroir).

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Vadakattu Gupta1, Rob Bramley1, Paul Greenfield2, Julian Yu3, Markus Herderich4

1CSIRO Ag & Food, Urrbrae, SA, Australia 
2CSIRO Energy, North Ryde, NSW, Australia 
3Arizona State University, Arizona, USA 
4AWRI, Urrbrae, SA, Australia

Contact the author

Keywords

Rotundone, microbiome diversity, bacteria, fungi, grapes

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Deciphering grapevine trunk early molecular responses to P. minimum and P. chlamydospora in the presence of a commercial biocontrol agent (Trichoderma atroviride, Vintec®)

Esca, one of the main grapevine trunk diseases, is a complex and poorly understood disease. Phaeoacremonium minimum and Phaeomoniella chlamydospora, two of the main pathogens associated to this disease, are thought to be responsible for the first trunk infections. Little is known concerning grapevine trunk defenses during pathogen infection.

Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Oak wood selection and maturation are essential steps in the course of barrel fabrication. Given the existence of many factors involved in the choice of raw material and in natural seasoning of oak wood, it is very difficult to determine the real impact of seasoning and selection factors on oak wood composition. A sampling was done to study the evolution of oak wood chemical composition during four seasoning steps: non matured, 12 months, 18 months and 24 months. For this sampling, three selection factors were taken into account: age, grain type and the Polyphenolic Index measured by Oakscan®. Besides extractables
(~10%), three polymers constitute the main part of oak wood: cellulose, hemicelluloses and lignins.

Cover crops under-vine impact on grapevine performance and vineyard soil microorganisms is highly affected by edaphoclimatic conditions at a regional scale 

Soil management through cover crops can influence the cycle of nutrients, promote water infiltration, decrease erosion, and enhance the soil microbiota biodiversity, improving the grapevine performance. However, the area under the vines tends to be left bare by applying herbicides or tillage to avoid competition with the crop in semi-arid climates. Use of covers under-vine might be an alternative to these practices aiming at grapevine quality and soil health improvement. The aim of this research was to study the implications of soil management under the vines (cultivation and cover crops) on growth, yield, berry composition and soil microbial communities. A cover crop composed by a mixture of legumes was sown and compared with a control (cultivation), which includes frequent tillage to keep the soil bare, in three areas characterized by different edaphoclimatic conditions in the region of Navarra.

Study of the fruity aroma of red wines through perceptual interactions among volatile compounds in the context of climate change for the Bordeaux vineyard

The fruity aroma of red wines is described by a wide range of descriptors, ranging from fresh fruits to ripe and jammy fruits, to candied fruits and prunes notes [1]. The fruity quality of a red wine is characterized by notes of fresh and jammy red- and black-berry fruits.

Comparison between the volatile chemical profile of two different blends for the enhancement of  “Valpolicella Superiore”

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.