Terroir 2020 banner
IVES 9 IVES Conference Series 9 Microbial metagenomics of vineyard soils and wine terroir

Microbial metagenomics of vineyard soils and wine terroir

Abstract

Aims: The aims of this study were to (i) characterize bacterial and fungal communities in selected Australian vineyard soils and (ii) determine if the soil microbiome composition and diversity varied between different zones within a vineyard. 

Rationale: The soil on which vines are grown has been suggested to impart a unique quality to the grapes and wine due to the physiological responses of the vines to soil type, topography and climatic conditions, in addition to their viticultural management. The influence of bacteria and fungi in wine fermentation is well known but little is known about the effect of soil microbes, other than microbial pathogens, on grape composition or their role in vintage or site (terroir) impacts on grape composition. 

Methods and Results: We investigated the potential relationships between soil microbiome composition measured using a metagenomic approach (16S rRNA and ITS region amplicon and metagenomic sequencing) and inherent spatial variation in grape metabolite composition, specifically the concentration of the ‘impact aroma compound’ rotundone in Shiraz grapes (Vitis vinifera L.) grown in vineyards in the Grampians region of Victoria and in the Adelaide Hills in South Australia. Results from the metagenomics analysis of surface soil samples collected from the previously identified ‘rotundone zones’ in a vineyard indicated marked differences in the genetic diversity and composition of the soil bacterial and fungal microbiomes of these zones. Soils from the high rotundone zone exhibited higher diversity of bacteria, but lower diversity of fungi, compared to the soils in the Low rotundone zone. In addition, the network analysis of the microbial community in the High rotundone zone soils appeared well structured, especially with respect to the bacterial community, compared to that in the Low rotundone zone soils. A few specific taxa/groups of microorganisms e.g. Acidobacteria-GP4 and GP7, Rhizobiales, Burkholdiales, Gaiellales, Alphaproteobacteria and the Nectriaceae and Tremellaceae families of fungi, were associated with the rotundone-based variation. Short-term mulching effects did not seem to mask the rotundone zone-based variation. Predictive functional profiling using 16S rRNA marker gene sequences, FAPROTAX-based analysis indicated differences in functional categories such as manganese oxidation, methylotrophy, methanotrophy, oxidation of sulfur compounds. These findings suggest that the observed taxonomic variation needs to be translated into functional aspects of soil microbiome before mechanistic links to rotundone concentrations can be established.

Conclusions:  

Distinct differences in soil bacterial and fungal community composition and structure in different zones within the same vineyard are associated with different propensities for grape berry rotundone concentration. Also, high rotundone zone soil exhibited a well-connected microbial community network by comparison with the Low rotundone zone soil.

Significance and impact of the Study: These findings of a systematic rotundone zone-based variation in soil microbiomes paves the way to bring together understanding of microbial ecology and viticultural management for improved grape composition and wine flavour (terroir).

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Vadakattu Gupta1, Rob Bramley1, Paul Greenfield2, Julian Yu3, Markus Herderich4

1CSIRO Ag & Food, Urrbrae, SA, Australia 
2CSIRO Energy, North Ryde, NSW, Australia 
3Arizona State University, Arizona, USA 
4AWRI, Urrbrae, SA, Australia

Contact the author

Keywords

Rotundone, microbiome diversity, bacteria, fungi, grapes

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

ALCOHOLIC FERMENTATION AND COLOR OF ROSÉ WINES: INVESTIGATIONS ON THE MECHANISMS RESPONSIBLE FOR SUCH DIVERSITY

Color is one of the key elements for the marketing of rosé wines due to their packaging in transparent bottles. Their broad color range is due to the presence of pigments belonging to phenolic compounds extracted from grapes or formed during the wine-making process. However, the mechanisms responsible for such diversity are poorly understood. The few investigations performed on rosé wines showed that their phenolic composition is highly variable, close to that of red wines for the darkest rosés but very different for light ones [1]. Moreover, large variations in the extent of color loss taking place during fermentation have been reported but the mechanisms involved and causes of such variability are unknown.

Effect of interspecific yeast hybrids for secondary in-bottle alcoholic fermentation of english sparkling wines

In sparkling winemaking several yeasts can be used to perform the primary alcoholic fermentation that leads to the elaboration of the base wine. However, only a few Saccharomyces cerevisiae yeast strains are regularly used for the secondary in-bottle alcoholic fermentation 1. Recently, advances in yeast development programs have resulted in new breeds of interspecific wine yeast hybrids that ferment efficiently while producing novel flavours and aromas 2. In this work, sparkling wines produced using interspecific yeast hybrids for the secondary in-bottle alcoholic fermentation have been chemically and sensorially characterized.METHODS: Three commercial English base wines have been prepared for secondary in-bottle alcoholic fermentation with different yeast strains, including two commercial and several novel interspecific hybrids derived from Saccharomyces species not traditionally used in sparkling winemaking. After 12 months of lees ageing, the 14 wines produced were analysed for their chemical and macromolecular composition 3,4, phenolic profile 5, foaming and viscosity properties [6]. The analytical data were supplemented with a sensory analysis.

Winemaking processes discrimination by using qNMR metabolomics

AIM: Metabolomics in food science has been increasingly used over the last twenty years. Among the tools used for wine, qNMR has emerged as a powerful tool to discern wines based on environmental factors such as geographical origin, grape variety and vintage (Gougeon et al., 2019a).

Applying value proposition design to collective strategic actions in family wineries: enhancing territorial resources in Vale dos Vinhedos, Brazil

The study aims to propose collective strategic actions for family wineries, promoting their competitiveness and the valorization of territorial resources.

Influence of the malolactic fermentation on wine metabolomics or drastic metabolomics changes due to malolactic fermentation

It is well known that lactic acid bacteria modify the wine volatile compound. However, very few data are available regarding metabolite changes that occurred during the malolactic fermentation (MLF).