Terroir 2020 banner
IVES 9 IVES Conference Series 9 Microbial metagenomics of vineyard soils and wine terroir

Microbial metagenomics of vineyard soils and wine terroir

Abstract

Aims: The aims of this study were to (i) characterize bacterial and fungal communities in selected Australian vineyard soils and (ii) determine if the soil microbiome composition and diversity varied between different zones within a vineyard. 

Rationale: The soil on which vines are grown has been suggested to impart a unique quality to the grapes and wine due to the physiological responses of the vines to soil type, topography and climatic conditions, in addition to their viticultural management. The influence of bacteria and fungi in wine fermentation is well known but little is known about the effect of soil microbes, other than microbial pathogens, on grape composition or their role in vintage or site (terroir) impacts on grape composition. 

Methods and Results: We investigated the potential relationships between soil microbiome composition measured using a metagenomic approach (16S rRNA and ITS region amplicon and metagenomic sequencing) and inherent spatial variation in grape metabolite composition, specifically the concentration of the ‘impact aroma compound’ rotundone in Shiraz grapes (Vitis vinifera L.) grown in vineyards in the Grampians region of Victoria and in the Adelaide Hills in South Australia. Results from the metagenomics analysis of surface soil samples collected from the previously identified ‘rotundone zones’ in a vineyard indicated marked differences in the genetic diversity and composition of the soil bacterial and fungal microbiomes of these zones. Soils from the high rotundone zone exhibited higher diversity of bacteria, but lower diversity of fungi, compared to the soils in the Low rotundone zone. In addition, the network analysis of the microbial community in the High rotundone zone soils appeared well structured, especially with respect to the bacterial community, compared to that in the Low rotundone zone soils. A few specific taxa/groups of microorganisms e.g. Acidobacteria-GP4 and GP7, Rhizobiales, Burkholdiales, Gaiellales, Alphaproteobacteria and the Nectriaceae and Tremellaceae families of fungi, were associated with the rotundone-based variation. Short-term mulching effects did not seem to mask the rotundone zone-based variation. Predictive functional profiling using 16S rRNA marker gene sequences, FAPROTAX-based analysis indicated differences in functional categories such as manganese oxidation, methylotrophy, methanotrophy, oxidation of sulfur compounds. These findings suggest that the observed taxonomic variation needs to be translated into functional aspects of soil microbiome before mechanistic links to rotundone concentrations can be established.

Conclusions:  

Distinct differences in soil bacterial and fungal community composition and structure in different zones within the same vineyard are associated with different propensities for grape berry rotundone concentration. Also, high rotundone zone soil exhibited a well-connected microbial community network by comparison with the Low rotundone zone soil.

Significance and impact of the Study: These findings of a systematic rotundone zone-based variation in soil microbiomes paves the way to bring together understanding of microbial ecology and viticultural management for improved grape composition and wine flavour (terroir).

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Vadakattu Gupta1, Rob Bramley1, Paul Greenfield2, Julian Yu3, Markus Herderich4

1CSIRO Ag & Food, Urrbrae, SA, Australia 
2CSIRO Energy, North Ryde, NSW, Australia 
3Arizona State University, Arizona, USA 
4AWRI, Urrbrae, SA, Australia

Contact the author

Keywords

Rotundone, microbiome diversity, bacteria, fungi, grapes

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Descriptive analysis of Sangiovese and Cabernet-Sauvignon wines from different terroirs in D.O.C. Bolgheri (Tuscany)

Different terroirs have been identified in Bolgheri area (a viticultural appellation in the Tirrenian coast of Tuscany) by the aid of pedological, landscape and agronomic observations in 1993. Numerous preliminary observations suggested that wines obtained from these different terroirs were unique.

EFFECTS OF LEAF REMOVAL AT DIFFERENT BUNCHES PHENOLOGICAL STAGES ON FREE AND GLYCOCONJUGATE AROMAS OF SKINS AND PULPS OF TWO ITALIAN RED GRAPES

Canopy-management practices are applied in viticulture to improve berries composition and quality, having a great impact on primary and secondary grape metabolism. Among these techniques, cluster zone leaf removal (defoliation) is widely used to manage air circulation, temperature and light radiation of grape bunches and close environment. Since volatiles are quantitatively and qualitatively influenced by the degree of fruit ripeness, the level of solar exposure, and the thermal environment in which grapes ripen, leaf removal has been shown to affect volatile composition of grape berries [1].

Agrivoltaic: chances preparing Riesling towards a better climate resilience

Agrivoltaics (AV), the innovative dual-use of land for agriculture and photovoltaic energy production on the same land, offers a promising solution to the challenges of expanding renewable energy without compromising valuable agricultural land.

Monitoring the tawny port wine aging process using precision enology

AIM: Tawny Port wine is produced in the Douro Demarcated Region by blending several fortified wines in different aging stages. During the aging process in small wood barrels, the red wine color progressively develops into tawny, medium tawny, or light tawny.

REDWINE project: use of Chlorella vulgaris to prevent biotic and abiotic stress in Palmela’s region, Portugal, vineyards

The new EU Green Deal aims to achieve GHG emissions reduction by at least 55% by 2030 and a climate neutral EU economy by 2050.
REDWine concept will be realized through the establishment of an integrated Living Lab demonstrating the viability of the system at TRL 7. The Living Lab will be able to utilize 2 ton of fermentation off-gas/year (90% of total CO2 produced in the fermenter) and 80 m3 of liquid effluent (100% of the liquid effluent generated during fermenter washing) to produce 1 ton (dry weight) of Chlorella biomass/year. This biomass will be processed under a downstream extraction process to obtain added-value extracts and applied in food, cosmetic and agricultural end-products and to generate a new EcoWine. REDWine will focus on the recovery of off-gas from a 20.000L fermenter of red wine production existing in Adega Cooperativa de Palmela (ACP, located in Palmela, Portugal).