Terroir 2020 banner
IVES 9 IVES Conference Series 9 Soil variability effects on vine rootzones and available water

Soil variability effects on vine rootzones and available water

Abstract

Aim: The aim of this work is educating people about soil variability, vine rootzone depth and readily available water holding capacity. The concept of terroir is readily discussed in the wine industry but many people involved are unable to describe a soil profile and interpret its limitations that impact on vine growth, fruit quality and wine produced. This paper discusses soil physical characteristics important to vine root growth and readily available water holding capacity (RAW).

Background and Results: Identification of the soil texture, structure and coarse fragment content is required to determine a vine rootzone depth and readily available water holding capacity (RAW).  Vine rootzone depths are dependent on soil texture and structure. For example vine roots will penetrate 50 cm into a friable sub-angular or angular blocky clay, but only 30 cm into prismatic, columnar or lenticular clay.  Vine rootzone depths are used to calculate the RAW value (mm) of the soil profile and consequently irrigation management units and design.  Water retention curve data used to calculate RAW values uses the relationship between water content and matric potential (Childs, 1940), which is dependent on soil texture and structure (Hillel, 1982). The predicted rootzone depth and RAW values will therefore be dependent on the changes in a landscape which is part of the concept of terroir.

Three examples of soil profile characteristics from a 40 ha property located on the Fleurieu Peninsula of South Australia are presented:

  • Soil 1 is a yellow Sodosol (Isbell, 1996) with deep sand over massive sandy clay.  The predicted rootzone depth is 70 cm and the RAW value 36 mm.  Vine roots are limited by the massive yellow sandy clay at 40 cm;
  • Soil 2 is a red Chromosol (Isbell, 1996) with shallow sandy clay loam topsoil over friable angular blocky clay and clay soil carbonate in the lower subsoil.  The predicted rootzone depth is 60 cm and the RAW value 36 mm.  Vine roots will colonise 50 cm of the friable clay and will penetrate the soil carbonate in the lower subsoil;
  • Soil 3 is a Calcarosol (Isbell, 1996) with sandy clay loam and 50% calcareous rock fragments to 50 cm, below which is un-weathered calcareous shale rock.  The predicted rootzone depth is restricted by the calcareous rock and the high percentage of coarse fragments reduces the RAW value to 18 mm. 

Conclusions: 

The volume of soil utilised by vine roots and the RAW value are governed by soil physical properties which change with position in the landscape, the concept of terroir.  

Significance and Impact of the Study: Soil profile characterisation is essential to all forms of agriculture and horticulture.  Understanding how soil variability impacts on vine root growth, fruit quality and wine production is the essence of terroir.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Geoff Kew1*

1Kew Wetherby Soil Survey Pty Ltd, Second Valley, South Australia, Australia, 5204

Contact the author

Keywords

Soil monolith, soil variability, soil profile description, soil horizon, field hand texture, soil structure

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Water use efficiency of Chardonnay under different grafting combinations in the viticultural area of Franciacorta

Drought poses a challenge to future viticulture, exacerbated by climate change, which increases the frequency and severity of water shortages.

Bioprospecting of native Metschnikowia pulcherrima strains for biocontrol and aroma enhancement in the wine production chain

Metschnikowia pulcherrima is a well-studied non-conventional oenological yeast due to its positive contributions to winemaking as a bioprotective agent and as an aroma-enhancing starter in sequential fermentations with Saccharomyces cerevisiae (Binati et al., 2023; Canonico et al., 2023).

Mapping natural terroir units using a multivariate approach and legacy data

This work aimed at setting up a multivariate and geostatistical methodology to map natural terroir units of the viticultural areas at the province scale (1:125,000).

PROTEOMIC STUDY OF THE USE OF MANNOPROTEINS BY OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION

Malolactic fermentation (MLF) is a desired process to decrease acidity in wine. This fermentation, carried out mostly by Oenococcus oeni, is sometimes challenging due to the wine stress factors affecting this lactic acid bacterium. Wine is a harsh environment for microbial survival due to the presence of ethanol and the low pH, and with limited nutrients that compromise O. oeni development. This may result in slow or stuck fermentations. After the alcoholic fermentation the nutrients that remain in the medium, mainly released by yeast, can be used in a beneficial way by O. oeni during MLF.

Taking advantages of innovative chemometric tools to unveil vineyard ecosystem dynamics: look across volatile secondary metabolites

Sustainable viticulture and winemaking continue to represent huge challenges, where a better knowledge about the functional role of biodiversity in the vineyard ecosystems is required.