Terroir 2020 banner
IVES 9 IVES Conference Series 9 Soil variability effects on vine rootzones and available water

Soil variability effects on vine rootzones and available water

Abstract

Aim: The aim of this work is educating people about soil variability, vine rootzone depth and readily available water holding capacity. The concept of terroir is readily discussed in the wine industry but many people involved are unable to describe a soil profile and interpret its limitations that impact on vine growth, fruit quality and wine produced. This paper discusses soil physical characteristics important to vine root growth and readily available water holding capacity (RAW).

Background and Results: Identification of the soil texture, structure and coarse fragment content is required to determine a vine rootzone depth and readily available water holding capacity (RAW).  Vine rootzone depths are dependent on soil texture and structure. For example vine roots will penetrate 50 cm into a friable sub-angular or angular blocky clay, but only 30 cm into prismatic, columnar or lenticular clay.  Vine rootzone depths are used to calculate the RAW value (mm) of the soil profile and consequently irrigation management units and design.  Water retention curve data used to calculate RAW values uses the relationship between water content and matric potential (Childs, 1940), which is dependent on soil texture and structure (Hillel, 1982). The predicted rootzone depth and RAW values will therefore be dependent on the changes in a landscape which is part of the concept of terroir.

Three examples of soil profile characteristics from a 40 ha property located on the Fleurieu Peninsula of South Australia are presented:

  • Soil 1 is a yellow Sodosol (Isbell, 1996) with deep sand over massive sandy clay.  The predicted rootzone depth is 70 cm and the RAW value 36 mm.  Vine roots are limited by the massive yellow sandy clay at 40 cm;
  • Soil 2 is a red Chromosol (Isbell, 1996) with shallow sandy clay loam topsoil over friable angular blocky clay and clay soil carbonate in the lower subsoil.  The predicted rootzone depth is 60 cm and the RAW value 36 mm.  Vine roots will colonise 50 cm of the friable clay and will penetrate the soil carbonate in the lower subsoil;
  • Soil 3 is a Calcarosol (Isbell, 1996) with sandy clay loam and 50% calcareous rock fragments to 50 cm, below which is un-weathered calcareous shale rock.  The predicted rootzone depth is restricted by the calcareous rock and the high percentage of coarse fragments reduces the RAW value to 18 mm. 

Conclusions: 

The volume of soil utilised by vine roots and the RAW value are governed by soil physical properties which change with position in the landscape, the concept of terroir.  

Significance and Impact of the Study: Soil profile characterisation is essential to all forms of agriculture and horticulture.  Understanding how soil variability impacts on vine root growth, fruit quality and wine production is the essence of terroir.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Geoff Kew1*

1Kew Wetherby Soil Survey Pty Ltd, Second Valley, South Australia, Australia, 5204

Contact the author

Keywords

Soil monolith, soil variability, soil profile description, soil horizon, field hand texture, soil structure

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

How to reduce SO2 additions in wine with the aid of non-conventional yeasts

Among the factors that influence the sensory quality, style, safety, sustainability, and sense of place of a wine, the contributions of microbial biodiversity are widely becoming more recognized. Throughout winemaking, multiple biochemical reactions are performed by a myriad of different microorganisms interacting in many ways.

Climatic zoning of viticultural production periods over the year in the tropical zone: application of the methodology of the Géoviticulture MCC system

L’objectif de cette recherche est le zonage climatique des périodes viticoles de l’année dans la Vallée du São Francisco, région brésilienne productrice de vins située en climat tropical semi-aride. Dans cette région, la production peut être échelonnée sur tous les mois de l’année.

Influence du terroir et de la conduite du verger sur la vigueur, le développement et la productivité des pommiers. Conséquences sur la teneur en sucres des pommes

Dans le cadre d’une étude globale de l’influence du type de sol et de la conduite du verger sur la composition des pommes à cidre, une attention particulière est portée sur les facteurs amonts de la qualité comme

Australia’s Wine Future: A Climate Atlas

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Grapevine adaptation to drought and resistance to Neofusicoccum parvum, causal agent of Botryosphaeria dieback

The sustainability of viticulture in response to climate change has been addressed mainly considering agronomic impacts, such as water management and diseases, either separately or together.
In grapevines, there is strong evidence that different genotypes respond differently to biotic and abiotic stresses. A screening was conducted on various local cultivars in response to drought and Neofusicoum parvum infection aiming to evaluate their susceptibility to abiotic stress and resistance to fungal diseases.