Terroir 2020 banner
IVES 9 IVES Conference Series 9 Soil variability effects on vine rootzones and available water

Soil variability effects on vine rootzones and available water

Abstract

Aim: The aim of this work is educating people about soil variability, vine rootzone depth and readily available water holding capacity. The concept of terroir is readily discussed in the wine industry but many people involved are unable to describe a soil profile and interpret its limitations that impact on vine growth, fruit quality and wine produced. This paper discusses soil physical characteristics important to vine root growth and readily available water holding capacity (RAW).

Background and Results: Identification of the soil texture, structure and coarse fragment content is required to determine a vine rootzone depth and readily available water holding capacity (RAW).  Vine rootzone depths are dependent on soil texture and structure. For example vine roots will penetrate 50 cm into a friable sub-angular or angular blocky clay, but only 30 cm into prismatic, columnar or lenticular clay.  Vine rootzone depths are used to calculate the RAW value (mm) of the soil profile and consequently irrigation management units and design.  Water retention curve data used to calculate RAW values uses the relationship between water content and matric potential (Childs, 1940), which is dependent on soil texture and structure (Hillel, 1982). The predicted rootzone depth and RAW values will therefore be dependent on the changes in a landscape which is part of the concept of terroir.

Three examples of soil profile characteristics from a 40 ha property located on the Fleurieu Peninsula of South Australia are presented:

  • Soil 1 is a yellow Sodosol (Isbell, 1996) with deep sand over massive sandy clay.  The predicted rootzone depth is 70 cm and the RAW value 36 mm.  Vine roots are limited by the massive yellow sandy clay at 40 cm;
  • Soil 2 is a red Chromosol (Isbell, 1996) with shallow sandy clay loam topsoil over friable angular blocky clay and clay soil carbonate in the lower subsoil.  The predicted rootzone depth is 60 cm and the RAW value 36 mm.  Vine roots will colonise 50 cm of the friable clay and will penetrate the soil carbonate in the lower subsoil;
  • Soil 3 is a Calcarosol (Isbell, 1996) with sandy clay loam and 50% calcareous rock fragments to 50 cm, below which is un-weathered calcareous shale rock.  The predicted rootzone depth is restricted by the calcareous rock and the high percentage of coarse fragments reduces the RAW value to 18 mm. 

Conclusions: 

The volume of soil utilised by vine roots and the RAW value are governed by soil physical properties which change with position in the landscape, the concept of terroir.  

Significance and Impact of the Study: Soil profile characterisation is essential to all forms of agriculture and horticulture.  Understanding how soil variability impacts on vine root growth, fruit quality and wine production is the essence of terroir.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Geoff Kew1*

1Kew Wetherby Soil Survey Pty Ltd, Second Valley, South Australia, Australia, 5204

Contact the author

Keywords

Soil monolith, soil variability, soil profile description, soil horizon, field hand texture, soil structure

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Impact of the ‘Pinot’-family on early ripening in cool climate viticulture varieties

‘Pinot Precoce Noir’ (PPN) is an early ripening clone of ‘Pinot Noir’ (PN). The phenological differentiation is visible by an about two weeks earlier onset of veraison. It was found that the early veraison locus Ver1 on chromosome 16, previously identified in ‘Calardis Musqué’, originated from PPN. A highly correlated SSR marker, namely GF16-Ver1, was developed and tested for its ability to molecularly differentiate between PPN and PN as well as its potential to trace individual descendants.

Vegetative dose heights ‘Cabernet Sauvignon’ and its influence on fruit and wine quality

The leaf area is of fundamental importance so that the plant can realize adequate levels of photosynthesis for the accumulation of reserves and to reach a suitable maturation of
the berries. In this sense, the objective was to evaluate the effect of different lengths of the stalks from the first support wire, in the must and in the wine of ‘Cabernet Sauvignon’.

Identification of compounds produced by reactions of flavonoids and acetaldehyde in wine

During aging, wine consumes small amounts of oxygen. This oxygen intake triggers a series of reactions that lead to flavonoid elongation, which is known to reduce bitterness and astringency while enhancing color stability.

Evaluation of Acıkara (Vitis vinifera L.) native grape variety of anatolia for red wine production potential

The acıkara grape variety, a nearly forgotten native black variety in Anatolia/Turkey, has recently gained interest in its potential for producing high-quality wine from producers and consumers. The potential of producing high-quality red wine from the Acıkara grape variety (vitis vinifera), which is cultivated on the elmalı/antalya in the highland (1100 m altitude) of western mediterranean region, was investigated, and the suitability of the wine’s characteristics associated with high-quality red wine was determined.

Metatranscriptomic analysis of “aszú” berries: the potential role of the most important species of the grape microbiota in the aroma of wines with noble rot

Botrytis cinerea has more than 1200 host plants and is one of the most important plant pathogens in viticulture. Under certain environmental conditions, it can lead to the development of a noble rot, which results in a specific metabolic profile, altering physical texture and chemical composition. The other microbes involved in this process and their functional genes are poorly characterised. We have generated metatranscriptomic [1,2] and DNA metabarcoding data from three months of the Furmint grape variety, representing the four phases of noble rot, from healthy berries to completely dried berries.