Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 A research agenda for terroir: an empirical, international expert study

A research agenda for terroir: an empirical, international expert study

Abstract

Aim: Terroir is a French concept relating the qualities and quality of agricultural products to their physical and socio-cultural place of origin. It is increasingly used by business and policymakers as a marketing technique to provide economic benefits (e.g. Lenglet, 2014; Wine Australia, 2015), and to potentially preserve cultural heritage (e.g. Bauer, 2009) and the environment (e.g. Bowen, 2010). The rising interest in this interdisciplinary and sometimes controversial concept (e.g. Bosker, 2017; Matthews, 2016) presents an opportune time to consider important future directions for research and collaboration. The aim of this expert study was to develop a research agenda for future terroir studies, informed by academic, industry and government experts, which is interdisciplinary and international in scope.

Methods and Results: This project employed a Delphi approach, an iterative framework for eliciting expert views and building consensuses (Dalkey and Helmer, 1963; Hasson et al., 2000; Rowe and Wright, 1999). The first round of the project consisted of 40 interviews with academic, business and policy experts to identify important research priorities for terroir. Experts were selected on the basis of publication counts and seniority for academics, and global influence/recognition for industry members and policymakers, as well as ensuring a balance of geographic regions and genders. A confirmatory survey asked experts to rank priorities identified by two or more experts in interviews, to identify the most promising areas for future terroir studies. 

Conclusions: 

The final list of identified research priorities will be presented at the conference. Preliminary priorities identified from the interviews are:

  1. terroir’s economic and marketing advantages for business and regions;
  2. consumer views of terroir;
  3. taste, flavour and terroir;
  4. terroir’s meaning and use in different products, cultures and places;
  5. social issues and terroir (e.g. succession planning, gender inequity);
  6. the plant–place biophysical relationship;
  7. climate change effects and adaptation, for agriculture and more broadly;
  8. terroir as a dynamic concept, changing through time; and
  9. terroir’s connection to environmental sustainability.

Significance and Impact of the Study: The research areas and agenda identified provide a basis for future work on terroir, to ensures its relevance and significance for researchers, industry and policy, as well as cohesions as an area of research. The research agenda may also provide valuable ideas for new project development, including for research students. 

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Guy Leedon1*, Patrick L’Espoir Decosta1, Gary Buttriss1, Vinh Lu1

1The Research School of Management, College of Business and Economics, The Australian National University, Canberra, ACT, Australia

Contact the author

Keywords

Terroir, research agenda, research priorities, expert study

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Leaf elemental composition in a replicated hybrid grape progeny grown in distinct climates

The elemental composition (the ionome) of grape leaves is an important indicator of nutritional
health, but its genetic architecture has received limited scientific attention. In this study, we
analyzed the leaf ionome of 131 interspecific F1 hybrid progeny from a Vitis rupestris (♀) X Vitis
riparia (♂) cross. The progeny were replicated in New York, South Dakota, Southwest Missouri ad Central Missouri, and the concentration of 20 elements were measured in their leaves at
three different phenological stages during the growing season. In leaves collected at the apical node at anthesis, elemental concentrations correlated in a consistent manner (p < 0.05) across all four geographic locations. In subsequent phenological stages, elemental ratios in the apical-node leaves remained consistent across the South Dakota and New York sites, but not across the Missouri sites. In leaves collected at the basal and middle nodes, correlations varied greatly across all locations.

Key learnings about the chemical bases of wine uniqueness and quality, essential companions for future developments

This presentation aims to demonstrate that the value attributed to wine as we today know it is based on three factors: 1) sensory balance, 2) personality, and 3) bioactivity.

Elevational range shifts of mountain vineyards: Recent dynamics in response to a warming climate

Increasing temperatures worldwide are expected to cause a change in spatial distribution of plant species along elevational gradients and there are already observable shifts to higher elevations as a consequence of climate change for many species. Not only naturally growing plants, but also agricultural cultivations are subject to the effects of climate change, as the type of cultivation and the economic viability depends largely on the prevailing climatic conditions. A shift to higher elevations therefore represents a viable adaptation strategy to climate change, as higher elevations are characterized by lower temperatures. This is especially important in the case of viticulture because a certain wine-style can only be achieved under very specific climatic conditions. Although there are several studies investigating climatic suitability within winegrowing regions or longitudinal shifts of winegrowing areas, little is known about how fast vineyards move to higher elevations, which may represent a viable strategy for winegrowers to maintain growing conditions and thus wine-style, despite the effects of climate change. We therefore investigated the change in the spatial distribution of vineyards along an elevational gradient over the past 20 years in the mountainous wine-growing region of Alto Adige (Italy). A dataset containing information about location and planting year of more than 26000 vineyard parcels and 30 varieties was used to perform this analysis. Preliminary results suggest that there has been a shift to higher elevations for vineyards in general (from formerly 700m to currently 850 m a.s.l., with extreme sites reaching 1200 m a.s.l.), but also that this development has not been uniform across different varieties and products (i.e. vitis vinifera vs hybrid varieties and still vssparkling wines). This is important for climate change adaptation as well as for rural development. Mountain areas, especially at mid to high elevations, are often characterized by severe land abandonment which can be avoided to some degree if economically viable and sustainable land management strategies are available.

Green pruning of shoots to force new sprouting of buds, in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

The context of climate crisis leads to the acceleration of technological ripening of grapes, with unsuitable loss of acidity, so various vineyard management alternatives are being considered to delay the grape ripening. The delay of the vegetative cycle towards a period of milder temperatures affects ripening, but vine behavior can vary according to the area, conduction, watering, variety, etc. A work is proposed to know the response to the green pruning of shoots, executed in fruit set and in pea size, in cv. Verdejo.

Dialing in grapevine water stress indicators to better reflect holistic stress responses

Current remote sensing strategies rely heavily on reflectance data and energy balance modelling using thermal imagery to estimate crop water use and stress. These approaches show great promise for driving precision management decisions, but still require work to better understand how detected changes relate to meaningful physiological changes. Under water stress, grapevines exhibit a range of responses involving both biological and physical changes within leaves and canopies.