Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 A research agenda for terroir: an empirical, international expert study

A research agenda for terroir: an empirical, international expert study

Abstract

Aim: Terroir is a French concept relating the qualities and quality of agricultural products to their physical and socio-cultural place of origin. It is increasingly used by business and policymakers as a marketing technique to provide economic benefits (e.g. Lenglet, 2014; Wine Australia, 2015), and to potentially preserve cultural heritage (e.g. Bauer, 2009) and the environment (e.g. Bowen, 2010). The rising interest in this interdisciplinary and sometimes controversial concept (e.g. Bosker, 2017; Matthews, 2016) presents an opportune time to consider important future directions for research and collaboration. The aim of this expert study was to develop a research agenda for future terroir studies, informed by academic, industry and government experts, which is interdisciplinary and international in scope.

Methods and Results: This project employed a Delphi approach, an iterative framework for eliciting expert views and building consensuses (Dalkey and Helmer, 1963; Hasson et al., 2000; Rowe and Wright, 1999). The first round of the project consisted of 40 interviews with academic, business and policy experts to identify important research priorities for terroir. Experts were selected on the basis of publication counts and seniority for academics, and global influence/recognition for industry members and policymakers, as well as ensuring a balance of geographic regions and genders. A confirmatory survey asked experts to rank priorities identified by two or more experts in interviews, to identify the most promising areas for future terroir studies. 

Conclusions: 

The final list of identified research priorities will be presented at the conference. Preliminary priorities identified from the interviews are:

  1. terroir’s economic and marketing advantages for business and regions;
  2. consumer views of terroir;
  3. taste, flavour and terroir;
  4. terroir’s meaning and use in different products, cultures and places;
  5. social issues and terroir (e.g. succession planning, gender inequity);
  6. the plant–place biophysical relationship;
  7. climate change effects and adaptation, for agriculture and more broadly;
  8. terroir as a dynamic concept, changing through time; and
  9. terroir’s connection to environmental sustainability.

Significance and Impact of the Study: The research areas and agenda identified provide a basis for future work on terroir, to ensures its relevance and significance for researchers, industry and policy, as well as cohesions as an area of research. The research agenda may also provide valuable ideas for new project development, including for research students. 

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Guy Leedon1*, Patrick L’Espoir Decosta1, Gary Buttriss1, Vinh Lu1

1The Research School of Management, College of Business and Economics, The Australian National University, Canberra, ACT, Australia

Contact the author

Keywords

Terroir, research agenda, research priorities, expert study

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Port wine region settling

Cet exposé présente une caractérisation générale de la Région Délimitée du Douro (RDD), productrice des appellations Porto (vins généreux), et Douro pour des vins de qualité VQPRD.

An excessive leaf-fruit ratio reduces the yeast assimilable nitrogen in the must

Yeast assimilable nitrogen (YAN) in the grape must is a key variable for wine quality as a source of aroma precursors. In a situation of YAN deficiency, a foliar urea application upon the vine at veraison enhances YAN concentration and facilitates must fermentation. In 2013, Agroscope investigated the impact of leaf-fruit ratio on the nitrogen (N) assimilation and partitioning in grapevine Vitis vinifera cv. Chasselas following foliar-urea application with the aim of improving its efficiency on the YAN concentration.

Elucidating white wines peptides: An analytical breaktrough

The chemistry of wine is particularly complex due to biochemical and chemical interactions that significantly modify its organoleptic characteristics and stability over time. Aging on lees is a well-known practice during which various compounds are released, ensuring wines oxidative stability and its overall sensory quality [1,2].

IDENTIFYING POTENTIAL CHEMICAL MARKERS RESPONSIBLE FOR THE PERMISSIVENESS OF BORDEAUX RED WINES AGAINST BRETTANOMYCES BRUXELLENSIS USING UNTARGETED METABOLOMICS

All along the red winemaking process, many microorganisms develop in wine, some being beneficial and essential, others being feared spoilers. One of the most feared microbial enemy of wine all around the world is Brettanomyces bruxellensis. Indeed, in red wines, this yeast produces volatile phenols, molecules associated with a flavor described as “horse sweat”, “burnt plastic” or “leather”. To produce significant and detectable concentrations of these undesired molecules, the yeasts should first grow and become numerous enough. Even if the genetic group of the strain present and the cellar temperature may modulate the yeast growth rate¹ and thus the risk of spoilage, the main factor seems to be the wines themselves, some being much more permissive to B. bruxellensis development than others.

Rootstock-scion contributions to seasonal water and light use diversity under field conditions

Cultivar and rootstock selection are two well-known strategies for adapting vine production in challenging environments. Despite the vast diversity of rootstocks and cultivars, their effective contribution to grapevine sustainable development and acclimation to changing growing conditions remains an open question. The use of robust and prompt monitoring tools can allow a powerful screening of the water status of the vineyard before considering a further detailed characterization. This study leveraged new tools to monitor the stomatal conductance (gs), transpiration rate (E), and quantum efficiency of photosystem II (ᶲPSII) throughout a season, from pre-veraison to after-harvest.