Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Diversity and internationalization of wine grape varieties: Evidence from a revised global database

Diversity and internationalization of wine grape varieties: Evidence from a revised global database

Abstract

Aim: To quantify the extent to which national mixes of wine grape varieties (in terms of vineyard bearing area) have become more or less diversified, and ‘internationalized’, since wine globalization accelerated from the 1990s. 

Method and Results: In addition to bearing area (in hectares), shares and indexes are estimated for each of 53 countries in an updated global database involving 700+ wine regions that account for 99% of the world’s wine grape vineyard area and 1,700+ DNA-distinct prime wine grape varieties and 1350+ synonyms, for 2000, 2010 and 2016. This global database (Anderson and Nelgen, 2020) is a major revision, extension and update of Anderson (2013). Its prime varieties are linked to their country of origin and synonyms are as nominated by Robinson et al. (2012) or otherwise JKI (2019).

Conclusion: 

These results reveal that vignerons’ wine grape varietal choices are narrowing across the world. That is, they are becoming less diversified as many countries converge on the major ‘international’ varieties, especially French ones. This is not inconsistent with the fact that wine consumers are enjoying an ever-wider choice range, thanks to far greater international trade in wine associated with the current wave of globalization. Nor is it inconsistent with strengthening vigneron interest in ‘alternative’ and native varieties in numerous countries, including Italy (D’Agata, 2014) and Australia (Higgs, 2019). That interest stems in part from a desire to diversify their varietal mix to differentiate their offering – including through the terroir-driven use of minor varieties in blends – and to hedge against increasing weather volatility. It just happens that in recent decades the latter centrifugal forces are dominated by the centripetal force of embracing the most popular varieties for ease of marketing and presumably higher profits. Moreover, the quality of the current global mix of varieties is arguably substantially above the average quality of the top half-dozen varieties as of 1990.

Significance and Impact of the Study: The apparent paradox of reduced diversity and greater internationalization in the world’s vineyards is partly explained by major changes in a few national bearing areas. This new database provides many other insights in addition to those highlighted in this paper. For example, it includes for the first time numerous climate variables for each of its 700+ regions, prepared with the assistance of Gregory Jones of Linfield University, Oregon. That allows one to examine the varietal mix in regions whose climate in recent years is similar to what other regions will endure in the decades ahead thanks to on-going climate changes.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Kym Anderson1* and Signe Nelgen2

1 Wine Economics Research Centre, University of Adelaide, Adelaide, South Australia, 5005, Australia
2 Research Associate, Geisenheim University, Germany 

Contact the author

Keywords

Index of similarity between national and global varietal mixes, index of internationalization of prime varieties

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Different strategies for the rapid detection of Haze‐Forming Proteins (HFPs)

Over the last decades, wine analysis has become an important analytical field, with emphasis placed on the development of new methodologies for characterization and elaboration control.

Chemical affinity and binding capacity between pre-purified Cabernet-Sauvignon/Merlot anthocyanins and salivary proteins monitored by UHPLC Q-ToF MS analysis

Apart from pro(antho)cyanidins and tannins, other phenolic compounds in wine or grapes have been shown to interact with salivary proteins and may contribute to overall sensory in-mouth sensations [1, 2]. Anthocyanins are the dominant phenolics in red wine and grape skin [3] , so it is expected that they come into contact and interact with salivary proteins after ingestion.

Vineyard floor management intensity impacts soil health indicators and biodiversity across South Australian viticultural landscapes

Vineyard floors in warm, dry landscapes including those in South Australia, have traditionally been managed using intensive practices such as tillage and herbicides to control weeds and vegetation, thereby limiting competition with grapevines for water and nutrients in order to not compromise yields.

Influence Of Phytosterols And Ergosterol On Wine Alcoholic Fermentation For Saccharomyces Cerevisiae Strains

Sterols are a fraction of the eukaryotic lipidome that is essential for the maintenance of the cell membrane integrity and their good functionality. During alcoholic fermentation, they ensure yeast growth, metabolism and viability, as well as resistance to osmotic stress and ethanol inhibition. Two sterol sources can support yeasts to adapt to fermentation stress conditions: ergosterol, produced by yeast in aerobic conditions, and phytosterols, plant sterols found in grape musts imported by yeasts in anaerobiosis. Little is known about the physiological impact of the assimilation of phytosterols in comparison to ergosterol and the influence of sterol type on fermentation kinetics parameters.

Some applications come from a method to concentrate proteins

All techniques usually used to assay proteins was not reliable in vegetable extract due to interferences with the components included in extracts like polyphenols, tanins, pectines, aromatics compounds. Absorbance at 280nm, Kjeldhal assay, Biuret and Lowry methods, Acid Bicinchonique technique and Bradford assay give the results depending on the composition of extract, on the presence or not of detergent and on the raw material (Marchal, 1995). Another difficulty in these extracts for the quantification of proteins comes from the large amount of water included in vegetable and the low concentration of proteins. Thus in red wines, proteins are usually not taken into account due to their low concentration (typically below 10 mgL-1) and to the presence of anthocyanis and polyphenols.