Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Diversity and internationalization of wine grape varieties: Evidence from a revised global database

Diversity and internationalization of wine grape varieties: Evidence from a revised global database

Abstract

Aim: To quantify the extent to which national mixes of wine grape varieties (in terms of vineyard bearing area) have become more or less diversified, and ‘internationalized’, since wine globalization accelerated from the 1990s. 

Method and Results: In addition to bearing area (in hectares), shares and indexes are estimated for each of 53 countries in an updated global database involving 700+ wine regions that account for 99% of the world’s wine grape vineyard area and 1,700+ DNA-distinct prime wine grape varieties and 1350+ synonyms, for 2000, 2010 and 2016. This global database (Anderson and Nelgen, 2020) is a major revision, extension and update of Anderson (2013). Its prime varieties are linked to their country of origin and synonyms are as nominated by Robinson et al. (2012) or otherwise JKI (2019).

Conclusion: 

These results reveal that vignerons’ wine grape varietal choices are narrowing across the world. That is, they are becoming less diversified as many countries converge on the major ‘international’ varieties, especially French ones. This is not inconsistent with the fact that wine consumers are enjoying an ever-wider choice range, thanks to far greater international trade in wine associated with the current wave of globalization. Nor is it inconsistent with strengthening vigneron interest in ‘alternative’ and native varieties in numerous countries, including Italy (D’Agata, 2014) and Australia (Higgs, 2019). That interest stems in part from a desire to diversify their varietal mix to differentiate their offering – including through the terroir-driven use of minor varieties in blends – and to hedge against increasing weather volatility. It just happens that in recent decades the latter centrifugal forces are dominated by the centripetal force of embracing the most popular varieties for ease of marketing and presumably higher profits. Moreover, the quality of the current global mix of varieties is arguably substantially above the average quality of the top half-dozen varieties as of 1990.

Significance and Impact of the Study: The apparent paradox of reduced diversity and greater internationalization in the world’s vineyards is partly explained by major changes in a few national bearing areas. This new database provides many other insights in addition to those highlighted in this paper. For example, it includes for the first time numerous climate variables for each of its 700+ regions, prepared with the assistance of Gregory Jones of Linfield University, Oregon. That allows one to examine the varietal mix in regions whose climate in recent years is similar to what other regions will endure in the decades ahead thanks to on-going climate changes.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Kym Anderson1* and Signe Nelgen2

1 Wine Economics Research Centre, University of Adelaide, Adelaide, South Australia, 5005, Australia
2 Research Associate, Geisenheim University, Germany 

Contact the author

Keywords

Index of similarity between national and global varietal mixes, index of internationalization of prime varieties

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

The use of epifluorescence versus plating to monitor the effect of different parameters on microorganisms in wine

The monitoring of the number of micro-orgranisms in wine is crucial for the wine producer. Traditional counting methods include microscopic enumeration and plating on selective media, which measures the culturability of the cells. The use of epifluorescence microscopy is, however, a method, which can measure both culturability and

Low-cost sensors as a support tool to monitor soil-plant heat exchanges in a Mediterranean vineyard

Mediterranean viticulture is increasingly exposed to more frequent extreme conditions such as heat waves. These extreme events co-occur with low soil water content, high air vapor pressure deficit and high solar radiant energy fluxes and result in leaf and berry sunburn, lower yield, and berry quality, which is a major constraint for the sustainability of the sector. Grape growers must find ways to proper and effectively manage heat waves and extreme canopy and berry temperatures. Irrigation to keep soil moisture levels and enable adequate plant turgor, and convective and evaporative cooling emerged as a key tool to overcome this major challenge. The effects of irrigation on soil and plant water status are easily quantifiable but the impact of irrigation on soil and canopy temperature and on heat convection from soil to cluster zone remain less characterized. Therefore, a more detailed quantification of vineyard heat fluxes is highly relevant to better understand and implement strategies to limit the effects of extreme weather events on grapevine leaf and berry physiology and vineyards performance. Low-cost sensor technologies emerge as an opportunity to improve monitoring and support decision making in viticulture. However, validation of low-cost sensors is mandatory for practical applicability. A two-year study was carried in a vineyard in Alentejo, south of Portugal, using low-cost thermal cameras (FLIR One, 80×60 pixels and FLIR C5, 160×120 pixels, 8-14 µm, FLIR systems, USA) and pocket thermohygrometers (Extech RHT30, EXTECH instruments, USA) to monitor grapevine and soil temperatures. Preliminary results show that low-cost cameras can detect severe water stress and support the evaluation of vertical canopy temperature variability, providing information on soil surface temperature. All these thermal parameters can be relevant for soil and crop management and be used in decision support systems.

Assessing and mapping vineyard water status variability using a miniaturized nir spectrophotometer from a moving vehicle

In the actual scenario of climate change, optimization of water usage is becoming critical in sustainable viticulture. Most of the current approaches to assess grapevine water status and drive irrigation scheduling are either destructive, time and labour consuming and monitor a small, limited number of plants. This work presents a novel methodology using a contactless, miniaturized, low-cost NIR spectrometer to monitor the vineyard water status variability from a moving vehicle, to provide reliable information towards precision irrigation.

Metabolomics comparison of non-Saccharomyces yeasts in Sauvignon blanc and Shiraz

Saccharomyces cerevisiae (SC) is the main driver of alcoholic fermentation however, in wine, non-Saccharomyces species can have a powerful effect on aroma and flavor formation. This study aimed to compare untargeted volatile compound profiles from SPME-GC×GC-TOF-MS of Sauvignon blanc and Shiraz wine inoculated with six different non-Saccharomyces yeasts followed by SC. Torulaspora delbrueckii (TD), Lachancea thermotolerans (LT), Pichia kluyveri (PK) and Metschnikowia pulcherrima (MP) were commercial starter strains, while Candida zemplinina (CZ) and Kazachstania aerobia (KA), were isolated from wine grape environments. Each fermentation produced a distinct chemical profile that was unique for both grape musts. The SC-monoculture and CZ-SC sequential fermentations were the most distinctly different in the Sauvignon blanc while the LT-SC sequential fermentations were the most different from the control in the Shiraz fermentations.

Influence of the “terroir” (soil, climate and wine grower) on the quality of red Grenache wines in the Rhône Valley

«L’Observatoire Grenache» est un réseau de parcelles qui a été mis en place par l’Institut Rhodanien en Vallée du Rhône sur les millésimes de 1995 à 1999. Composé de 24 parcelles de Vitis vinifera L. cv Grenache noir, ce réseau vise à étudier l’influence du terroir (sol, climat et vigneron) sur la qualité des vins. Les parcelles ont été choisies afin de représenter différentes situations géographiques et géopédologiques de la vallée du Rhône. Le matériel végétal (clone, porte-greffe), la taille (cordon de Royat), la densité et l’âge de la parcelle ont été encadrées. Ainsi les conditions de milieu (sol, climat) et les pratiques du vigneron étaient les principales sources de variations.