Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Usefulness and limits of the crop water stress index obtained from leaf temperature for vine water status monitoring

Usefulness and limits of the crop water stress index obtained from leaf temperature for vine water status monitoring

Abstract

Aims: This work aimed i) to calibrate the accuracy of estimating vineyard water status by crop water stress index (CWSI) compared to stem water potential; ii) to determine the time interval during the day that best correlates to stem water potential and iii) to understand the its usefulness.

Methods and Results: Four levels of irrigation were set up in 2017 on a Cabernet-Sauvignon vineyard grafted to 110R in Morata de Tajuña (Madrid, Spain). The experimental design was a completely randomized four-block design. During two seasons, 2018 and 2019, stem water potential (SWP) and leaf temperature were measured at three time points during the day (8:00; 12.00 and 16:00 solar time) in five dates during 2018 and three dates in 2019. CWSI was calculated based on leaf temperature as the ratio: (Ttreat leaf  Twet)/(Tdry – Twet). Leaf temperature (Ttreat leaf) was measured with an infrared camera model FLIR-E60; Four shaded leaves per treatment were sampled at each time of measurement, for a total of 16 leaves per measurement interval. ANOVA for CWSI and stem water potential was also performed to compare the sensitivity of each parameter to vine water status. All statistical analyses were performed with the Statistix10 package.

Results showed that stem water potential was slightly more sensitive than CWSI to estimate vine water status. Different relationships were found during the season between CWSI and SWP. The determination coefficient was higher at midseason than at the beginning or late in the growing season. The highest R2 were found at noon and during the evening, being no-significant in the morning.

Conclusions: 

Crop Water Stress Index obtained from leaf temperature could be used to estimate plant water status although assuming that it is less sensitive than Stem Water Potential. The index was more accurate in describing the plant water status in midseason than either early or late in the season and better at midday and evening than in the morning.

Significance and Impact of the Study: The study confirms the use of CWSI as a tool to determine vineyard water status and its limitations. Limitations include its effectiveness being confined to midseason and measurements are recommended to be collected from noon onwards. We propose to keep CWSI lower than 0.6 from budbreak until bloom and to move within 0.6 to 0.8 during maturation to ensure SWP is over -1.0MPa (-10 bar) and within -1.0 and -1.2 MPa during ripening.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

G. Camacho-Alonso, P. Baeza*, G. Mendoza, A. Hueso, A.M. Tarquis

Research Centre for the Management of Agricultural and Environmental Risks – CEIGRAM
Universidad Politécnica de Madrid, 28040 Ciudad Universitaria, Madrid, Spain

Contact the author

Keywords

Crop water stress index, stem water potential, thermal images

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Effect of “Terroir” on quanti-qualitative paramethers of “vino nobile di Montepulciano”

In this last ten years period, there has been many integrated and interdisciplinary studies to determine the aptitude of different zones to viticulture (Lulli et al., 1989 ; Costantini, 1992 ; Fregoni et al., 1992). The researches needed some différent knowledges about environment characteristics (soil, climate), ecology, vineyard management, vine genetic, winemaking and sensory analysis. The interaction of all these knowledge produced the assessment about the environmental vocation (Scienza et al., 1992). By means of this metodology, the “viticultural vocation” joined the word “zoning”, that is the territory parting for its ecopedological and geographical characteristics in relation to adaptative answer of winegrape (Morlat, 1989).

´Vinho Verde´ wines production from differential fermentation: the role of musts sulphitation as a preservation strategy to keep the musts character

High-volume mass-market white wines production method by means of harvest-deferred fermentation from desulphited musts allows an efficient business management by avoiding the seasonality in wine sector.

Rară Neagră 2.0: prospecting, improving and safeguarding the biodiversity in an eastern european heritage grape variety

The Rară Neagră 2.0 project aims to restore and safeguard the intra-varietal diversity of the ancient Eastern European grape variety Rară Neagră through polyclonal selection and the establishment of a certified genetic conservatory.

Non-Saccharomyces yeast nitrogen consumption and metabolite production during wine fermentation

Over the last decade, the use of non-Saccharomyces yeasts in the winemaking process has been re-assessed and accepted by winemakers. These yeasts can be used to achieve specific objectives such as lowering the ethanol content, preventing wine spoilage and increasing the production of specific aroma compounds. Since these species are unable to complete alcoholic fermentation, strategies of co- and sequential inoculation of non-Saccharomyces and Saccharomyces cerevisiae have been developed. However, when mixed starter cultures are used, several parameters (e.g. strain yeast, inoculation timing and nutrient competitions) impact the growth of the individual yeasts, the fermentation kinetics and the metabolites/aroma production. In particular, competition for nitrogen compounds could have a major impact, potentially leading to sluggish fermentation when the yeast assimilable nitrogen (YAN) availability is low. Moreover, many aroma compounds produced by the yeasts are directly produced and influenced by nitrogen metabolism such as higher alcohols, acetate esters and ethyl esters which participate in the organoleptic complexity of wine.

Exploring the potential of agrivoltaics in German vineyards: A GIS-based assessment

The growing demand for renewable energy and sustainable agricultural practices has highlighted the potential of agrivoltaics (Agri-PV) as a promising solution, particularly in the context of German viticulture.