Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Usefulness and limits of the crop water stress index obtained from leaf temperature for vine water status monitoring

Usefulness and limits of the crop water stress index obtained from leaf temperature for vine water status monitoring

Abstract

Aims: This work aimed i) to calibrate the accuracy of estimating vineyard water status by crop water stress index (CWSI) compared to stem water potential; ii) to determine the time interval during the day that best correlates to stem water potential and iii) to understand the its usefulness.

Methods and Results: Four levels of irrigation were set up in 2017 on a Cabernet-Sauvignon vineyard grafted to 110R in Morata de Tajuña (Madrid, Spain). The experimental design was a completely randomized four-block design. During two seasons, 2018 and 2019, stem water potential (SWP) and leaf temperature were measured at three time points during the day (8:00; 12.00 and 16:00 solar time) in five dates during 2018 and three dates in 2019. CWSI was calculated based on leaf temperature as the ratio: (Ttreat leaf  Twet)/(Tdry – Twet). Leaf temperature (Ttreat leaf) was measured with an infrared camera model FLIR-E60; Four shaded leaves per treatment were sampled at each time of measurement, for a total of 16 leaves per measurement interval. ANOVA for CWSI and stem water potential was also performed to compare the sensitivity of each parameter to vine water status. All statistical analyses were performed with the Statistix10 package.

Results showed that stem water potential was slightly more sensitive than CWSI to estimate vine water status. Different relationships were found during the season between CWSI and SWP. The determination coefficient was higher at midseason than at the beginning or late in the growing season. The highest R2 were found at noon and during the evening, being no-significant in the morning.

Conclusions: 

Crop Water Stress Index obtained from leaf temperature could be used to estimate plant water status although assuming that it is less sensitive than Stem Water Potential. The index was more accurate in describing the plant water status in midseason than either early or late in the season and better at midday and evening than in the morning.

Significance and Impact of the Study: The study confirms the use of CWSI as a tool to determine vineyard water status and its limitations. Limitations include its effectiveness being confined to midseason and measurements are recommended to be collected from noon onwards. We propose to keep CWSI lower than 0.6 from budbreak until bloom and to move within 0.6 to 0.8 during maturation to ensure SWP is over -1.0MPa (-10 bar) and within -1.0 and -1.2 MPa during ripening.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

G. Camacho-Alonso, P. Baeza*, G. Mendoza, A. Hueso, A.M. Tarquis

Research Centre for the Management of Agricultural and Environmental Risks – CEIGRAM
Universidad Politécnica de Madrid, 28040 Ciudad Universitaria, Madrid, Spain

Contact the author

Keywords

Crop water stress index, stem water potential, thermal images

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Consequences of apical leaf removal on grapevine water status, heat damage, yield and grape ripening on Pinot n and Chardonnay

Climate change presents a significant challenge to grape growing worldwide as increased temperatures lead to wines with increased sugar and pH levels. Manipulation of the exposed leaf area is a powerful lever governing the assimilation and storage of non-structural carbohydrates in grapevines. Reducing the leaf-to-fruit ratio is now considered as a tool for adapting to hotter and dryer grape growing conditions.

Temperature effects on the biosynthesis of aroma compounds in glera grapes

This paper describes the first year results of a study that investigated the effects of altitude and related temperature parameters on the biosynthesis of aromas in the Italian cultivar Glera.

AROMA AND SENSORY CHARACTERIZATION OF XINOMAVRO RED WINES FROM DIFFERENT GREEK PROTECTED DESIGNATIONS OF ORIGIN, EFFECT OF TERROIR CHARACTERISTICS

The quality of wines has often been associated with their geographical area of production. The aim of this work was to characterize Protected Designation of Origin (PDO) Xinomavro red wines from different geographical areas of Amyndeon and Naoussa in Northern Greece, elaborated with variables that contribute to their differentiation, such as soil characteristics, altitude, monthly average temperature and rainfall.
Xinomavro fruit parcels from different vineyards within the two PDO zones (5 PDO Naoussa and 6 PDO Amyndeon) were vinified following a standard winemaking process. A total of 25 aroma compounds were quantified using gas chromatography-mass spectrometry (GC-MS) with simultaneous full scan and selected ion monitoring for data recording, and odor activity values (OAVs) were determined.

Accumulation of deleterious mutations in grapevine and its relationship with traits of interest for wine production and resilience

Deleterious mutations that severely reduce population fitness are rapidly removed from the gene pool by purifying selection. However, evolutionary drivers such as genetic drift brought about by demographic bottlenecks may comprise its efficacy by allowing deleterious mutations to accumulate, thereby limiting the adaptive potential of populations. Moreover, positive selection can hitchhike mildly deleterious mutations due to linkage caused by lack of recombination. Similarly, in the context of species domestication, artificial selection mimics these evolutionary processes, which can have undesirable consequences for production and resilience. In this study, we evaluated the extent of the accumulation of deleterious mutations and the magnitude of their effects (also known as genetic load) at the whole-genome scale for ca.

Deciphering grapevine trunk early molecular responses to P. minimum and P. chlamydospora in the presence of a commercial biocontrol agent (Trichoderma atroviride, Vintec®)

Esca, one of the main grapevine trunk diseases, is a complex and poorly understood disease. Phaeoacremonium minimum and Phaeomoniella chlamydospora, two of the main pathogens associated to this disease, are thought to be responsible for the first trunk infections. Little is known concerning grapevine trunk defenses during pathogen infection.