Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Can the satellite image resolution be improved to support precision agriculture in the vineyard through vegetation indices?

Can the satellite image resolution be improved to support precision agriculture in the vineyard through vegetation indices?

Abstract

Aim: This study aims to show the application of a new methodological approach to improve the resolution of Sentinel-2A images and derived vegetation indices through the results from different vineyards. 

Methods and Results: A multiscale fully-connected Convolutional Neural Network (CNN) was constructed and applied for the pan-sharpening of Sentinel-2A images by high resolution UAS-based orthophoto. The reconstructed data was validated by independent high resolution multispectral UAS-based imagery and in-situ spectral measurements. The reconstructed Sentinel-2A images provided a temporal evaluation of plant responses to environmental factors using selected vegetation indices. The proposed methodology has been applied on different vineyards in southern Italy. Here, the outputs of CNN were compared with morpho-physiological data, both collected in-vivo and reconstructed through the retrospective analysis of vine trunk wood (tree-rings). The functional anatomical traits and isotopic signals were measured and used to derive indices such as water use efficiency. The obtained results showed a valuable agreement between the vegetation indices derived from reconstructed Sentinel-2A data and plant hydraulic traits obtained from tree-ring based reconstruction of vine eco-physiological behavior.

Conclusions: 

The multiscale CNN architecture for remote sensing imagery pan-sharpening and reconstruction can overcome the constraints in use of satellite images in precision agriculture, by creating new fused data valid for applications that could not be supported by the original Sentinel multispectral or UVS data. The validation of such an approach on different and real vineyard systems, with data collected in-vivo and through retrospective analyses on tree-ring chronologies has shown great potential to extend the approach to other woody crop systems. 

Significance and Impact of the Study: The integration between knowledge from different scientific domains represents a powerful approach to support the farmer in the field management and, at the same time, a valuable opportunity to study the plant adaptation to variable pedo-climatic conditions. This represents the base for understanding the vine adaptive capability and planning the actions for vineyard management under different climatic scenarios. Finally, emerging CNN methodologies can be implemented in DSS to support real-time monitoring of several parameters related to plant health status, to better follow plant growth in the field and evaluate its performance under changing environmental conditions.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

A. Bonfante1*, A. Brook2, G. Battipaglia3, A. Erbaggio4, M. Buonanno1, E. Monaco1, C. Cirillo5, V. De Micco5

1Institute for Mediterranean Agricultural and Forest Systems -CNR-ISAFOM, National Research Council, Ercolano-NA, Italy
2Spectroscopy & Remote Sensing Laboratory, Department of Geography and Environmental Studies, University of Haifa, Mount Carmel, Israel
3Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
4Freelance
5Department of Agricultural Sciences, University of Naples Federico II, Portici – NA, Italy

Contact the author

Keywords

Precision agriculture, satellite image resolution, CNN, grapevine hydraulics, KTB group approach

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Characterisation of berry shrivel in Vitis vinifera L. Cultivars in the Stellenbosch wine region

Late season dehydration, bunch stem necrosis, sugar accumulation disorder and sunburn are various types of berry shrivel occurring in vineyards. The incidence of these types of shrivel, and the degree to which it occur are influenced by various factors in the vineyard. These factors include the presence of pests and diseases in the vineyard, genetic traits expressed in certain cultivars, as
well as climatic and environmental factors. The occurrence of berry shrivel in the vineyard could negatively impact the quality and quantity of the fruit produced.

Accumulation of deleterious mutations in grapevine and its relationship with traits of interest for wine production and resilience

Deleterious mutations that severely reduce population fitness are rapidly removed from the gene pool by purifying selection. However, evolutionary drivers such as genetic drift brought about by demographic bottlenecks may comprise its efficacy by allowing deleterious mutations to accumulate, thereby limiting the adaptive potential of populations. Moreover, positive selection can hitchhike mildly deleterious mutations due to linkage caused by lack of recombination. Similarly, in the context of species domestication, artificial selection mimics these evolutionary processes, which can have undesirable consequences for production and resilience. In this study, we evaluated the extent of the accumulation of deleterious mutations and the magnitude of their effects (also known as genetic load) at the whole-genome scale for ca.

AGEING BOTTLED WINES SUBMERGED IN SEA: DOES IT IMPACT WINE COMPOSITION?

Aging wines is a common practice in oenology, which in recent years has undergone some innovations. Currently, we are witnessing the practice of aging bottled wine in depth, immersed in the sea or in reservoirs, for variable periods of time, but so far, little is known about the impact of aging in depth on the physicochemical properties, of wines.
The objective of this work was to evaluate the impact of this practice on the physicochemical characteristics, in particular to verify changes in the volatile composition of wines bottled and subsequently immersed in depth. A red wine from Cabernet Sauvignon was bottled and a set of bottles were submerged from July to February (2020), another set of bottles were submerged from February to September (2020) and another set was kept in the wine cellar. Bottles from each set were analyzed (in triplicate) in July 2021.

Microbial metagenomics of vineyard soils and wine terroir

Aims: The aims of this study were to (i) characterize bacterial and fungal communities in selected Australian vineyard soils and (ii) determine if the soil microbiome composition and diversity varied between different zones within a vineyard. 

Catechins, NMR, Huntington’s disease, protein aggregation modulation

Catechins, a subclass of flavonoids widely found in plants and plant-based foods and beverages such as wine and tea, not only exhibit significant antioxidant properties [1], as extensively documented in the literature, but can also inhibit amyloid protein aggregation [2], a key process implicated in the onset of neurodegenerative diseases such as Parkinson’s, Alzheimer’s, and Huntington’s.