Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Can the satellite image resolution be improved to support precision agriculture in the vineyard through vegetation indices?

Can the satellite image resolution be improved to support precision agriculture in the vineyard through vegetation indices?

Abstract

Aim: This study aims to show the application of a new methodological approach to improve the resolution of Sentinel-2A images and derived vegetation indices through the results from different vineyards. 

Methods and Results: A multiscale fully-connected Convolutional Neural Network (CNN) was constructed and applied for the pan-sharpening of Sentinel-2A images by high resolution UAS-based orthophoto. The reconstructed data was validated by independent high resolution multispectral UAS-based imagery and in-situ spectral measurements. The reconstructed Sentinel-2A images provided a temporal evaluation of plant responses to environmental factors using selected vegetation indices. The proposed methodology has been applied on different vineyards in southern Italy. Here, the outputs of CNN were compared with morpho-physiological data, both collected in-vivo and reconstructed through the retrospective analysis of vine trunk wood (tree-rings). The functional anatomical traits and isotopic signals were measured and used to derive indices such as water use efficiency. The obtained results showed a valuable agreement between the vegetation indices derived from reconstructed Sentinel-2A data and plant hydraulic traits obtained from tree-ring based reconstruction of vine eco-physiological behavior.

Conclusions: 

The multiscale CNN architecture for remote sensing imagery pan-sharpening and reconstruction can overcome the constraints in use of satellite images in precision agriculture, by creating new fused data valid for applications that could not be supported by the original Sentinel multispectral or UVS data. The validation of such an approach on different and real vineyard systems, with data collected in-vivo and through retrospective analyses on tree-ring chronologies has shown great potential to extend the approach to other woody crop systems. 

Significance and Impact of the Study: The integration between knowledge from different scientific domains represents a powerful approach to support the farmer in the field management and, at the same time, a valuable opportunity to study the plant adaptation to variable pedo-climatic conditions. This represents the base for understanding the vine adaptive capability and planning the actions for vineyard management under different climatic scenarios. Finally, emerging CNN methodologies can be implemented in DSS to support real-time monitoring of several parameters related to plant health status, to better follow plant growth in the field and evaluate its performance under changing environmental conditions.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

A. Bonfante1*, A. Brook2, G. Battipaglia3, A. Erbaggio4, M. Buonanno1, E. Monaco1, C. Cirillo5, V. De Micco5

1Institute for Mediterranean Agricultural and Forest Systems -CNR-ISAFOM, National Research Council, Ercolano-NA, Italy
2Spectroscopy & Remote Sensing Laboratory, Department of Geography and Environmental Studies, University of Haifa, Mount Carmel, Israel
3Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
4Freelance
5Department of Agricultural Sciences, University of Naples Federico II, Portici – NA, Italy

Contact the author

Keywords

Precision agriculture, satellite image resolution, CNN, grapevine hydraulics, KTB group approach

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Mapping plant water status to indirectly assess variability in grape flavonoids and inform selective harvest decisions

Plant water stress affects grape (Vitis vinifera L.) berry composition and is variable in space due to variations in the physical environment at the growing site. Could we use water status maps as a sensitive tool to discriminate between harvest zones?

Effect of culture and familiarity on wine perception: a study with spanish and british wine experts

Wine perception results from the interaction between the wine and its intrinsic and extrinsic characteristics and the experience [1], background and beliefs of the consumer [2,3]. Among all of the factors affecting wine perception, in this study we focused on culture and cognitive processes, working under the hypothesis that higher familiarity with wines would induce higher perceived quality. Furthermore, we hypothesised that culture would influence the verbalisation of wine properties associated with the different experiences of consumers from different cultures.

Study of the grape glycosidic aroma precursors by crossing SPE-GC/MS, SPME-GC/MS and LC/QTOF methods

Depending on the variety, grapes contain several chemical classes of aromatic compounds (i.e., terpenols, norisoprenoids, benzenoids) mainly stored as glycosides in berry skin.

Projected changes in vine phenology of two varieties with different thermal requirements cultivated in La Mancha DO (Spain) under climate change scenarios

The aim of this work was to analyze the phenology variability of Tempranillo and Chardonnay cultivars, related to the climatic characteristics in La Mancha Designation of Origin, and their potential changes under climate change scenarios. Phenological dates referred to budbreak, flowering, veraison and harvest were analyzed for the period 2000-2019. The weather conditions at daily time scale, recorded during the same period, were also evaluated. The thermal requirements to reach each of these phenological stages were calculated and expressed as the GDD accumulated from DOY=60. Changes in phenology were projected by 2050 and 2070 taking into account those values and the projected temperatures and precipitation, simulated under two Representative Concentration Pathway (RCP) scenarios –RCP4.5 and RCP8.5– using an ensemble of models. The average phenological dates during the period under study were, April 16th ± 6.6 days and April 5th ± 6.0 days for budbreak, May 31st ± 6.0 days and May 27th ± 5.3 days for flowering, July 26th ± 5.6 days and July 25th ± 5.8 days for veraison, and Ago 23rd ± 10.8 days and Ago 17th ± 9.0 days for harvest, respectively, for Tempranillo and Chardonnay. The projected changes in temperature imply an average change in the maximum growing season (April-August) temperatures of 1.2 and 1.9°C by 2050, and 1.6 and 2.6°C by 2070, under the RCP4.5 and RCP8.5 scenarios, respectively. A reduction in precipitation is predicted, which vary between 15% for 2050 under RCP4.5 scenario and up to 30% by 2070 under RCP8.5. The advance of the phenological dates for 2050, could be of 6, 7, 7, and 8 days for Tempranillo and 4, 6, 6 and 9 days for Chardonnay, respectively for budbreak, flowering, veraison and harvest under the RCP4.5 scenario. Under the RCP8.5 emission scenario, the advance could be up to 30% higher.

Impact of yeast derivatives to increase the phenolic maturity and aroma intensity of wine

Using viticultural and enological techniques to increase aromatics in white wine is a prized yet challenging technique for commercial wine producers. Equally difficult are challenges encountered in hastening phenolic maturity and thereby increasing color intensity in red wines. The ability to alter organoleptic and visual properties of wines plays a decisive role in vintages in which grapes are not able to reach full maturity, which is seen increasingly more often as a result of climate change. A new, yeast-based product on the viticultural market may give the opportunity to increase sensory properties of finished wines. Manufacturer packaging claims these yeast derivatives intensify wine aromas of white grape varieties, as well as improve phenolic ripeness of red varieties, but the effects of this application have been little researched until now. The current study applied the yeast derivative, according to the manufacture’s instructions, to the leaves of both neutral and aromatic white wine varieties, as well as on structured red wine varieties. Chemical parameters and volatile aromatics were analyzed in grape musts and finished wines, and all wines were subjected to sensory analysis by a tasting panel. Collective results of all analyses showed that the application of the yeast derivative in the vineyard showed no effect across all varieties examined, and did not intensify white wine aromatics, nor improve phenolic ripeness and color intensity in red wine.