Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Can the satellite image resolution be improved to support precision agriculture in the vineyard through vegetation indices?

Can the satellite image resolution be improved to support precision agriculture in the vineyard through vegetation indices?

Abstract

Aim: This study aims to show the application of a new methodological approach to improve the resolution of Sentinel-2A images and derived vegetation indices through the results from different vineyards. 

Methods and Results: A multiscale fully-connected Convolutional Neural Network (CNN) was constructed and applied for the pan-sharpening of Sentinel-2A images by high resolution UAS-based orthophoto. The reconstructed data was validated by independent high resolution multispectral UAS-based imagery and in-situ spectral measurements. The reconstructed Sentinel-2A images provided a temporal evaluation of plant responses to environmental factors using selected vegetation indices. The proposed methodology has been applied on different vineyards in southern Italy. Here, the outputs of CNN were compared with morpho-physiological data, both collected in-vivo and reconstructed through the retrospective analysis of vine trunk wood (tree-rings). The functional anatomical traits and isotopic signals were measured and used to derive indices such as water use efficiency. The obtained results showed a valuable agreement between the vegetation indices derived from reconstructed Sentinel-2A data and plant hydraulic traits obtained from tree-ring based reconstruction of vine eco-physiological behavior.

Conclusions: 

The multiscale CNN architecture for remote sensing imagery pan-sharpening and reconstruction can overcome the constraints in use of satellite images in precision agriculture, by creating new fused data valid for applications that could not be supported by the original Sentinel multispectral or UVS data. The validation of such an approach on different and real vineyard systems, with data collected in-vivo and through retrospective analyses on tree-ring chronologies has shown great potential to extend the approach to other woody crop systems. 

Significance and Impact of the Study: The integration between knowledge from different scientific domains represents a powerful approach to support the farmer in the field management and, at the same time, a valuable opportunity to study the plant adaptation to variable pedo-climatic conditions. This represents the base for understanding the vine adaptive capability and planning the actions for vineyard management under different climatic scenarios. Finally, emerging CNN methodologies can be implemented in DSS to support real-time monitoring of several parameters related to plant health status, to better follow plant growth in the field and evaluate its performance under changing environmental conditions.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

A. Bonfante1*, A. Brook2, G. Battipaglia3, A. Erbaggio4, M. Buonanno1, E. Monaco1, C. Cirillo5, V. De Micco5

1Institute for Mediterranean Agricultural and Forest Systems -CNR-ISAFOM, National Research Council, Ercolano-NA, Italy
2Spectroscopy & Remote Sensing Laboratory, Department of Geography and Environmental Studies, University of Haifa, Mount Carmel, Israel
3Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
4Freelance
5Department of Agricultural Sciences, University of Naples Federico II, Portici – NA, Italy

Contact the author

Keywords

Precision agriculture, satellite image resolution, CNN, grapevine hydraulics, KTB group approach

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Ethanol reduces grapevine water consumption by limiting transpiration

Studies suggest that ethanol (EtOH), triggers plant adaptation to various stresses at low concentrations (10 µM to 10 mM).

Influence of grapes origin and yeast strain on aroma profile of corvina and corvinone dry passito wines

Valpolicella is a wine region characterized by a wide use of the technology of grape drying for the production of two red passito wines, recognized as PDOs, “Recioto della Valpolicella” and the most famous “Amarone della Valpolicella”. Geographical origin of the grapes can influence wine composition by grape chemical composition yeast behaviour during fermentation. This study investigates the impact of different commercial yeast strains on aroma profiles of wines produced with withered grapes of different origins. In addition, the influence of spontaneous fermentation is also considered. METHODS: Experimental red wines were produced with a standard winemaking protocol with withered Corvina and Corvinone grapes obtained from two different geographical areas within the Valpolicella region. Fermentations were carried out with four different commercial yeasts plus a spontaneous fermentation. Wines were analysed by means of SPE- and SPME-GC-MS techniques and sensory analysis (sorting task).

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2].

Is it possible to approximate the technological and phenolic maturity of grapes by foliar application of elicitors?

The increase in the temperature and the more severe water stress conditions, trends observed in recent years as a consequence of climate change, are leading a mismatch between the technological and phenolic maturity of grapes

Grapevine productivity modelling in the Portuguese Douro Region

In Portugal, and particularly in the Demarcated Region of Douro (DDR), wine production has a great tradition, producing the unique and worldwide famous Port wine as well as other remarkably good table wines. In this study the impact of projected climate change to wine production is analysed for the DDR. A statistical grapevine yield model (GYM) is developed using climate parameters as predictors.