Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Can the satellite image resolution be improved to support precision agriculture in the vineyard through vegetation indices?

Can the satellite image resolution be improved to support precision agriculture in the vineyard through vegetation indices?

Abstract

Aim: This study aims to show the application of a new methodological approach to improve the resolution of Sentinel-2A images and derived vegetation indices through the results from different vineyards. 

Methods and Results: A multiscale fully-connected Convolutional Neural Network (CNN) was constructed and applied for the pan-sharpening of Sentinel-2A images by high resolution UAS-based orthophoto. The reconstructed data was validated by independent high resolution multispectral UAS-based imagery and in-situ spectral measurements. The reconstructed Sentinel-2A images provided a temporal evaluation of plant responses to environmental factors using selected vegetation indices. The proposed methodology has been applied on different vineyards in southern Italy. Here, the outputs of CNN were compared with morpho-physiological data, both collected in-vivo and reconstructed through the retrospective analysis of vine trunk wood (tree-rings). The functional anatomical traits and isotopic signals were measured and used to derive indices such as water use efficiency. The obtained results showed a valuable agreement between the vegetation indices derived from reconstructed Sentinel-2A data and plant hydraulic traits obtained from tree-ring based reconstruction of vine eco-physiological behavior.

Conclusions: 

The multiscale CNN architecture for remote sensing imagery pan-sharpening and reconstruction can overcome the constraints in use of satellite images in precision agriculture, by creating new fused data valid for applications that could not be supported by the original Sentinel multispectral or UVS data. The validation of such an approach on different and real vineyard systems, with data collected in-vivo and through retrospective analyses on tree-ring chronologies has shown great potential to extend the approach to other woody crop systems. 

Significance and Impact of the Study: The integration between knowledge from different scientific domains represents a powerful approach to support the farmer in the field management and, at the same time, a valuable opportunity to study the plant adaptation to variable pedo-climatic conditions. This represents the base for understanding the vine adaptive capability and planning the actions for vineyard management under different climatic scenarios. Finally, emerging CNN methodologies can be implemented in DSS to support real-time monitoring of several parameters related to plant health status, to better follow plant growth in the field and evaluate its performance under changing environmental conditions.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

A. Bonfante1*, A. Brook2, G. Battipaglia3, A. Erbaggio4, M. Buonanno1, E. Monaco1, C. Cirillo5, V. De Micco5

1Institute for Mediterranean Agricultural and Forest Systems -CNR-ISAFOM, National Research Council, Ercolano-NA, Italy
2Spectroscopy & Remote Sensing Laboratory, Department of Geography and Environmental Studies, University of Haifa, Mount Carmel, Israel
3Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
4Freelance
5Department of Agricultural Sciences, University of Naples Federico II, Portici – NA, Italy

Contact the author

Keywords

Precision agriculture, satellite image resolution, CNN, grapevine hydraulics, KTB group approach

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Immunotestπ: a new test for the determination of proteic stability in white and rosé wines

Proteic haze is a problem which may occur in all fruit-based beverages and fermented juices (beer, cider, wine). When it occurs, the economic loss is important.

The use of microwaves during the maceration of Cabernet Sauvignon wines for improving their chromatic characteristics

The use of new technologies such as microwaves (MW) arose in recent years as an efficient alternative to reduce the use of sulfur dioxide (SO2) and as a method for improving wines in terms of color and aroma [1, 2]. MW (non-ionizing electromagnetic waves with frequencies between 300 MHz and 300 GHz) have been widely applied in the food industry in order to reduce processing time and favor food preservation.

From soil to canopy, the diversity of adaptation strategies  to abiotic constraints in grapevine

Climate change is here. One of the main consequences is an increase in the frequency and severity of abiotic stresses which mostly occur in a combined manner. Grapevine, which grows in a large diversity of pedo-climatic conditions, has presumably evolved different mechanisms to allow this widespread adaptation. Harnessing the genetic diversity in these mechanisms will be central to the future of viticulture in many traditional wine growing areas. The interactions between the scion and the rootstock through grafting add an additional level of diversity and adaptive potential to explore.
At the physiological level, these mechanisms are related to processes such as root system development and functioning (water and nutrient uptake), interactions with the soil microbiome, gas exchange regulation, hydraulic properties along the soil-plant-atmosphere continuum, reserve storage, short and long distance signaling mechanisms and plasticity for some of these traits.

Selecting varieties best adapted to current and future climate conditions based on ripening traits

Aim: The aim of this study was to quantify key berry sugar accumulation traits and characterize their plasticity in response to climate variation from data collected from different cultivars over seven years from an experimental vineyard.

New oenological criteria for selecting strains of Lachancea thermotolerans for wine technology

The study conducted various fermentations of different grape juices using various strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Because of the new conditions caused by climate change, wine acidity must be influenced as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real options to mitigate the impact of climate change in wine production.