Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Can the satellite image resolution be improved to support precision agriculture in the vineyard through vegetation indices?

Can the satellite image resolution be improved to support precision agriculture in the vineyard through vegetation indices?

Abstract

Aim: This study aims to show the application of a new methodological approach to improve the resolution of Sentinel-2A images and derived vegetation indices through the results from different vineyards. 

Methods and Results: A multiscale fully-connected Convolutional Neural Network (CNN) was constructed and applied for the pan-sharpening of Sentinel-2A images by high resolution UAS-based orthophoto. The reconstructed data was validated by independent high resolution multispectral UAS-based imagery and in-situ spectral measurements. The reconstructed Sentinel-2A images provided a temporal evaluation of plant responses to environmental factors using selected vegetation indices. The proposed methodology has been applied on different vineyards in southern Italy. Here, the outputs of CNN were compared with morpho-physiological data, both collected in-vivo and reconstructed through the retrospective analysis of vine trunk wood (tree-rings). The functional anatomical traits and isotopic signals were measured and used to derive indices such as water use efficiency. The obtained results showed a valuable agreement between the vegetation indices derived from reconstructed Sentinel-2A data and plant hydraulic traits obtained from tree-ring based reconstruction of vine eco-physiological behavior.

Conclusions: 

The multiscale CNN architecture for remote sensing imagery pan-sharpening and reconstruction can overcome the constraints in use of satellite images in precision agriculture, by creating new fused data valid for applications that could not be supported by the original Sentinel multispectral or UVS data. The validation of such an approach on different and real vineyard systems, with data collected in-vivo and through retrospective analyses on tree-ring chronologies has shown great potential to extend the approach to other woody crop systems. 

Significance and Impact of the Study: The integration between knowledge from different scientific domains represents a powerful approach to support the farmer in the field management and, at the same time, a valuable opportunity to study the plant adaptation to variable pedo-climatic conditions. This represents the base for understanding the vine adaptive capability and planning the actions for vineyard management under different climatic scenarios. Finally, emerging CNN methodologies can be implemented in DSS to support real-time monitoring of several parameters related to plant health status, to better follow plant growth in the field and evaluate its performance under changing environmental conditions.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

A. Bonfante1*, A. Brook2, G. Battipaglia3, A. Erbaggio4, M. Buonanno1, E. Monaco1, C. Cirillo5, V. De Micco5

1Institute for Mediterranean Agricultural and Forest Systems -CNR-ISAFOM, National Research Council, Ercolano-NA, Italy
2Spectroscopy & Remote Sensing Laboratory, Department of Geography and Environmental Studies, University of Haifa, Mount Carmel, Israel
3Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
4Freelance
5Department of Agricultural Sciences, University of Naples Federico II, Portici – NA, Italy

Contact the author

Keywords

Precision agriculture, satellite image resolution, CNN, grapevine hydraulics, KTB group approach

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Enhancing plant defense: carbon dots for efficient spray-induced gene silencing 

Ectopic RNA application for plant defense faces challenges in tree crops, including size, diffusion, and stability of active compounds such as ribonucleoproteins and nucleic acids. While existing strategies involve expressing dsRNA in transgenic plants targeting pathogens, our research strives to develop a transient RNAi system based on Spray-Induced Gene Silencing (SIGS). This approach aims to circumvent legal barriers and public concerns associated with genetically modified organisms (GMOs). Our strategy integrates SIGS with branched polyethyleneimine-functionalized Carbon Dots (bPEI-CDs) as nanocarriers, effectively addressing unique delivery challenges in plant defense as RNA stability and uptake enhancement

Measurements of the oxygen dissolved in white wines elaborated in barrels without to open the bung of the barrels

Bases on oxoluminescence, we have developed an innovative device for measuring dissolved oxygen in wines in barrels without opening the bung. This system is directly inserted into the wood during the barrel elaboration and can be positioned at different locations of the barrel (the head, the hull …). During two successive vintages we have used this device notably to follow the oxygen dissolved of whites wines elaborated in barrels. This allowed us initially to monitor the oxygen levels of the harvest to bottling the whole elaboration process in barrels of white wines without using techniques of measurement suitable to modify the real values in wines (opening the bung to plunge an oximeter).

Soil and topography effects on water status and must composition of chardonnay in burgundy & a mini meta‐analysis of the δ 13C/water potentials correlation

The measurement of carbon isotopic discrimination in grape sugars 13 at harvest (δ C) is an integrated assessment of water status during ripening.

Experimental vinification of withered grapes of Vitis vinifera “Muscat of Alexandria”

The objective of the present work is to investigate wine produced from dehydrated grapes and vinified according to classical Roman manuals.

METHODS – Locally produced Muscat of Alexandria’s grapes were used for the sweet wine production, grown in the experimental vineyard of Instituto Superior de Agronomia (Lisbon, Portugal). The grapes were harvested manually slightly over-ripe and subjected to greenhouse drying. After 7-10 days dried grapes were transported to an experimental winery for various operations (e.g., grape weighing, sorting, crushing/destemming). Several maceration protocols were used comprising the addition of saltwater and white wine to whole bunches or destemmed grapes. Fermentation was conducted with the addition of commercial yeast. The standard physico-chemical parameters of wines were determined according to the OIV standards.

Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

1,1,6-trimethyl-1,2-dihydronaphtelene (TDN) evokes the odor of “petrol” in wine, especially in the variety Riesling. Increasing UV-radiation due to climate change intensifies formation of carotenoids in the berry skins and an increase of TDN-precursors1. Exploring new viticultural and oenological strategies to limit TDN formation in the future requires precise knowledge of TDN thresholds in different matrices. Thresholds reported in the literature vary substantially between 2 µg/L up to 20 µg/L2,3,4 due to the use of different methods. As Riesling grapes are used for very different wine styles such as dry, sweet or sparkling wines, it is essential to study the impact of varying ethanol and carbonation levels.