Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Spectral characterisation of fungal diseases on Vitis vinifera leaves

Spectral characterisation of fungal diseases on Vitis vinifera leaves

Abstract

Aims: The aims of this study were to (1) detect alterations in the reflectance spectra of vines with fungal diseases, (2) map these alterations, and (3) determine the best wavelengths which may be used as early indicators of fungal diseases in vines.

Methods and Results: Cabernet Sauvignon vines grown in pots and kept in a greenhouse were inoculated with the pathogens causing mildew, powdery mildew, black-foot and Petri disease. In early stages of disease development, reflectance measurements were performed using a FieldSpec 3 spectroradiometer, which were compared with data from healthy plants. Additional measurements were performed with chlorophyll meters. The investigation began with discriminant analysis, which revealed that symptomatic plants are indeed separated from the control ones. Reflectance spectra were therefore further investigated, looking for alterations on the shape of the spectra, characteristic of each disease. The disease descriptors were based on ratios between spectral features internal to a spectrum, a procedure which allowed the derivation of parameters intrinsic to each disease. A set of thresholds, defined as the intensity ratios of reflectance at selected wavelengths, was derived for the studied diseases. The selected wavelength ratios were 443/496, 443/573, 443/695, 443/1900, 496/573, 496/695, 516/1900, and 1900/2435 (values in nanometers), for which the spectra from symptomatic plants present shape changes of as much as 20% with respect to healthy plants.

Conclusions:

Spectral deformations were observed for the studied fungal diseases; they are larger for black-foot and powdery mildew, but some wavelength ratios are also indicators of downy mildew and Petri disease. Data from near-infrared in general carry more information compared with measurements at 1900 and 2435nm.

Significance and Impact of the Study: Since little is known on alterations of the reflectance spectra of vines, a better knowledge could be used in the development of sensors able to detect diseases through fast, non-destructive techniques. Early disease detection can lead to preventive actions which potentially can mitigate losses in grape yield and quality.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Pâmela A. Pithan1, Jorge R. Ducati1*, Lucas R. Garrido2

1Remote Sensing Center, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970 Porto Alegre RS, Brazil
2Centro Nacional de Pesquisas em Uva e Vinho, EMBRAPA, Bento Goncalves RS, Brazil

Contact the author

Keywords

Grapevine diseases, leaf reflectance, spectroradiometry, disease detection

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Terpenoids and norisoprenoids in italian red wines

AIM Terpene compounds are associated with floral notes and are characteristic of aromatic grape varieties such as Muscat (Jackson, 2008). They are generally considered to potentially contribute to the aroma of white wines. However, there is a growing interest towards the potential contribution of terpene compounds to the aroma of red wines. The aim of this work was to investigate the occurrence of different terpenes in red wines from Italian varieties. METHODS For this study wines from 11 mono-varietal Italian red wines from 12 regions were used (19 Sangiovese, 11 Nebbiolo, 10 Aglianico, 11 Primitivo, 10 Raboso del Piave, 9 Cannonau, 11 Teroldego, 3 Nerello, 9 Montepulciano, 7 Corvina). All samples were from vintage 2016 and none of them had been in contact with wood. A total of 19 terpenes and 7 norisoprenoids were analysed by mean of SPME-GC-MS analysis using a DVB-CAR-PDMS fiber. The wines were collected in the framework of the activities of the D-Wines (Diversity of Italian wines) project.

Mechanization of pre-flowering leaf removal under the temperate-climate conditions of Switzerland

Grapevine leaf removal (LR) in the cluster area is typically done between fruit set and cluster closure to create an unfavorable microclimate for fungal diseases, such as Botrytis cinerea and powdery mildew. Grape growers are now turning their attention to pre-flowering LR, which has additional benefits under certain conditions. When applied before flowering, LR strongly affects fruit set and thus the number of berries per cluster. It is therefore a good yield control tool, replacing time-consuming manual cluster thinning (Poni et al. 2006). It also improves berry structure, that is, skin thickness, skin-to-pulp ratio, and berry composition (total soluble solids, titratable acidity, and polyphenols) (Palliotti et al. 2012; Komm and Moyer 2015). By exacerbating competition for assimilates between reproductive and vegetative organs, pre-flowering LR also poses some risks. Excessive yield loss at the same year’s harvest due to a too low fruit set rate is the main concern: intensive pre-flowering LR (100% of the cluster area) can induce up to 50% yield loss in potted vines (Poni et al. 2005). Other parameters, such as cool climatic conditions during flowering, also affect fruit set rate and make it difficult to predict potential yield at harvest. Repeated and overly intensive preflowering LR can have repercussions over time and induce a decline in bud fruiting and plant vigor (Risco et al. 2014).

A mechanistic investigation of H/D scrambling processes in flavonoids

Several classes of flavonoids, such as anthocyanins, flavonols, flavanols and flavones, undergo a slow H/D exchange on aromatic ring A, leading to full deuteration at positions C(6) and C(8). Within the flavanol class, H-C(6) and H-C(8) of catechin and epicatechin are slowly exchanged in D2O to the corresponding deuterated analogues; even quercetin, a relevant flavonol representative, shows the same behaviour in a D2O/DMSOd6 1:1 solution. Detailed kinetic measurements of these H/D scrambling processes are here reported by exploiting the time-dependent changes of their peak areas in the 1H-NMR spectra taken at different temperatures. A unifying reaction mechanism is also proposed based on our detailed kinetic observations, even taking into account pH and solvent effects. Molecular modelling and QM calculations were also carried out to shed more light on several molecular details of the proposed mechanism.

Effect of different packaging materials on table grape quality preservation during cold storage

During cold storage, grapes undergo changes that affect their visual, mechanical, and organoleptic properties, potentially impacting quality and negatively influencing consumer acceptance. Key parameters include uniform color, crunchiness, and flesh consistency. We evaluated the influence of two distinct packaging methods on the chromatic characteristics, hardness, and pedicel detachment resistance of fourteen new seedless white and red grape varieties during cold storage. These factors are crucial for maintaining the quality of the product and extending its shelf-life. The novel grape varieties were obtained through a breeding program at CREA-VE of Turi, Southern Italy.

WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

Right after the pouring of wine in a glass, a myriad of volatile organic compounds, including ethanol, overwhelm the glass headspace, thus causing the so-called wine’s bouquet [1]. Otherwise, it is worth noting that during wine tasting, most people automatically swirl their glass to enhance the release of aromas in the glass headspace [1]. About a decade ago, Swiss researchers revealed the complex fluid mechanics underlying wine swirling [2]. However, despite mechanically repeated throughout wine tasting, the consequences of glass swirling on the chemical space found in the headspace of wine glasses are still barely known.