Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Spectral characterisation of fungal diseases on Vitis vinifera leaves

Spectral characterisation of fungal diseases on Vitis vinifera leaves

Abstract

Aims: The aims of this study were to (1) detect alterations in the reflectance spectra of vines with fungal diseases, (2) map these alterations, and (3) determine the best wavelengths which may be used as early indicators of fungal diseases in vines.

Methods and Results: Cabernet Sauvignon vines grown in pots and kept in a greenhouse were inoculated with the pathogens causing mildew, powdery mildew, black-foot and Petri disease. In early stages of disease development, reflectance measurements were performed using a FieldSpec 3 spectroradiometer, which were compared with data from healthy plants. Additional measurements were performed with chlorophyll meters. The investigation began with discriminant analysis, which revealed that symptomatic plants are indeed separated from the control ones. Reflectance spectra were therefore further investigated, looking for alterations on the shape of the spectra, characteristic of each disease. The disease descriptors were based on ratios between spectral features internal to a spectrum, a procedure which allowed the derivation of parameters intrinsic to each disease. A set of thresholds, defined as the intensity ratios of reflectance at selected wavelengths, was derived for the studied diseases. The selected wavelength ratios were 443/496, 443/573, 443/695, 443/1900, 496/573, 496/695, 516/1900, and 1900/2435 (values in nanometers), for which the spectra from symptomatic plants present shape changes of as much as 20% with respect to healthy plants.

Conclusions:

Spectral deformations were observed for the studied fungal diseases; they are larger for black-foot and powdery mildew, but some wavelength ratios are also indicators of downy mildew and Petri disease. Data from near-infrared in general carry more information compared with measurements at 1900 and 2435nm.

Significance and Impact of the Study: Since little is known on alterations of the reflectance spectra of vines, a better knowledge could be used in the development of sensors able to detect diseases through fast, non-destructive techniques. Early disease detection can lead to preventive actions which potentially can mitigate losses in grape yield and quality.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Pâmela A. Pithan1, Jorge R. Ducati1*, Lucas R. Garrido2

1Remote Sensing Center, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970 Porto Alegre RS, Brazil
2Centro Nacional de Pesquisas em Uva e Vinho, EMBRAPA, Bento Goncalves RS, Brazil

Contact the author

Keywords

Grapevine diseases, leaf reflectance, spectroradiometry, disease detection

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

How do we describe wine imagery? Expertise shapes language usage and multimodal imagery for wine

The acquisition of wine expertise is a multi-faceted and multisensory process with implications for sensory perception, attention, memory, and language production. With the prevalence of the predictive model of brain functioning, one area of burgeoning research interest involves wine mental imagery, since the brain relies on imagined experiences to build predictions for the future. Recent evidence has shown that, for instance, those with higher imagery vividness are more susceptible to wine advertising. However, little is known about the association between mental imagery and other associated cognitive processes, such as the ability to produce words that describe such imagery. 

The role of soil water holding capacity and plant water relations in zone/terroir expression

The spatial variability in soil type and depth and water holding capacity is very high in many viticultural regions of the world. Differences in rooting depths and water extraction profiles and their seasonal dynamics add additional variability and it is extremely difficult to deduct direct causal relationships between these factors and fruit

Managing precision irrigation in vineyards: hydraulic and molecular signaling in eight grapevine varieties

Understanding the physiological and molecular bases of grapevine responses to mild to moderate water deficits is fundamental to optimize vineyard irrigation management and identify the most suitable varieties. In Mediterranean regions, the higher frequency of heat waves and droughts highlights the importance of precision irrigation to meet vine water demands and demonstrates the necessity for a deeper understanding of the different physiological responses among varieties under water stress. In this context, previous reports show an interplay between stomatal regulation of transpiration and changes in leaf hydraulic conductivity, also with the involvement of aquaporins (AQPs), particularly under water stress. However, how those signaling mechanisms are regulated in different grapevine varieties along phenological phases is unclear.

Aromatic characterization of Moscato Giallo by GC-MS/MS and stable isotopic ratio analysis of the major volatile compounds

Among the Moscato grapes, Moscato Giallo is a winegrape variety characterized by a high content of free and glycosylated monoterpenoids, which gives very aromatic wines. The aromatic bouquet of Moscato Giallo is strongly influenced by the high concentration of linalool, geraniol, linalool oxides, limonene, α-terpineol, citronellol, HO-trienol, HO-diols, 8-Hydroxylinalool, geranic acid and β-myrcene, that give citrus, rose, and peach notes.

Valorization of grapevine leaves: screening of polyphenol composition in 50 cultivars

Grapevine leaves are known to contain different polyphenols such as flavonols, catechins and stilbenes, which are known to act as main contributors for plant defense against pathogens (1). While the composition for some major cultivars has been studied, there is lack of systematic comparison about the content of these compounds in the wide ecodiversity of Vitis vinifera cv. Recent advances in Mass Spectrometry-based Metabolomics allow a wider and more sensitive description of these polyphenols, as instance of those present in leaves (2). Such information could help to better explain leaf traits regarding the development of the leaf or to the plant tolerance to a pathogen. Moreover, these compounds offer appealing applications for human health due to their antioxidant activities.