Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Spectral characterisation of fungal diseases on Vitis vinifera leaves

Spectral characterisation of fungal diseases on Vitis vinifera leaves

Abstract

Aims: The aims of this study were to (1) detect alterations in the reflectance spectra of vines with fungal diseases, (2) map these alterations, and (3) determine the best wavelengths which may be used as early indicators of fungal diseases in vines.

Methods and Results: Cabernet Sauvignon vines grown in pots and kept in a greenhouse were inoculated with the pathogens causing mildew, powdery mildew, black-foot and Petri disease. In early stages of disease development, reflectance measurements were performed using a FieldSpec 3 spectroradiometer, which were compared with data from healthy plants. Additional measurements were performed with chlorophyll meters. The investigation began with discriminant analysis, which revealed that symptomatic plants are indeed separated from the control ones. Reflectance spectra were therefore further investigated, looking for alterations on the shape of the spectra, characteristic of each disease. The disease descriptors were based on ratios between spectral features internal to a spectrum, a procedure which allowed the derivation of parameters intrinsic to each disease. A set of thresholds, defined as the intensity ratios of reflectance at selected wavelengths, was derived for the studied diseases. The selected wavelength ratios were 443/496, 443/573, 443/695, 443/1900, 496/573, 496/695, 516/1900, and 1900/2435 (values in nanometers), for which the spectra from symptomatic plants present shape changes of as much as 20% with respect to healthy plants.

Conclusions:

Spectral deformations were observed for the studied fungal diseases; they are larger for black-foot and powdery mildew, but some wavelength ratios are also indicators of downy mildew and Petri disease. Data from near-infrared in general carry more information compared with measurements at 1900 and 2435nm.

Significance and Impact of the Study: Since little is known on alterations of the reflectance spectra of vines, a better knowledge could be used in the development of sensors able to detect diseases through fast, non-destructive techniques. Early disease detection can lead to preventive actions which potentially can mitigate losses in grape yield and quality.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Pâmela A. Pithan1, Jorge R. Ducati1*, Lucas R. Garrido2

1Remote Sensing Center, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970 Porto Alegre RS, Brazil
2Centro Nacional de Pesquisas em Uva e Vinho, EMBRAPA, Bento Goncalves RS, Brazil

Contact the author

Keywords

Grapevine diseases, leaf reflectance, spectroradiometry, disease detection

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Cover crops competition for water in vineyards: case studies in mediterranean terroirs

Vineyard cover cropping is a cultural practice widely used in many of the world’s winegrowing regions being one of the most recommended practices to face climate changes and to promote vineyard environmental sustainability.

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).

Using climate services to project grapevine varietal adequation under climate change – application to cv. Tempranillo in the Douro wine region

Vine growth circumstances are becoming warmer and drier because of climate change. Higher temperatures advance ripening to a point in the season less conducive to the production of fine wine, while drought reduces yields (Van Leeuwen et al., 2019). Several wine-producing regions around the world have already recognized threats to their viticultural viability (Santos et al., 2020). An economical and cost-effective strategy for adaptation is the employment of late-ripening, drought-resistant plant material (varieties, clones, and rootstocks).

Aroma and quality assessment for vertical vintages using machine learning modelling based on weather and management information

Wine quality traits are usually given by parameters such as aroma profile, total acidity, alcohol content, colour and phenolic content, among others