Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Spectral characterisation of fungal diseases on Vitis vinifera leaves

Spectral characterisation of fungal diseases on Vitis vinifera leaves

Abstract

Aims: The aims of this study were to (1) detect alterations in the reflectance spectra of vines with fungal diseases, (2) map these alterations, and (3) determine the best wavelengths which may be used as early indicators of fungal diseases in vines.

Methods and Results: Cabernet Sauvignon vines grown in pots and kept in a greenhouse were inoculated with the pathogens causing mildew, powdery mildew, black-foot and Petri disease. In early stages of disease development, reflectance measurements were performed using a FieldSpec 3 spectroradiometer, which were compared with data from healthy plants. Additional measurements were performed with chlorophyll meters. The investigation began with discriminant analysis, which revealed that symptomatic plants are indeed separated from the control ones. Reflectance spectra were therefore further investigated, looking for alterations on the shape of the spectra, characteristic of each disease. The disease descriptors were based on ratios between spectral features internal to a spectrum, a procedure which allowed the derivation of parameters intrinsic to each disease. A set of thresholds, defined as the intensity ratios of reflectance at selected wavelengths, was derived for the studied diseases. The selected wavelength ratios were 443/496, 443/573, 443/695, 443/1900, 496/573, 496/695, 516/1900, and 1900/2435 (values in nanometers), for which the spectra from symptomatic plants present shape changes of as much as 20% with respect to healthy plants.

Conclusions:

Spectral deformations were observed for the studied fungal diseases; they are larger for black-foot and powdery mildew, but some wavelength ratios are also indicators of downy mildew and Petri disease. Data from near-infrared in general carry more information compared with measurements at 1900 and 2435nm.

Significance and Impact of the Study: Since little is known on alterations of the reflectance spectra of vines, a better knowledge could be used in the development of sensors able to detect diseases through fast, non-destructive techniques. Early disease detection can lead to preventive actions which potentially can mitigate losses in grape yield and quality.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Pâmela A. Pithan1, Jorge R. Ducati1*, Lucas R. Garrido2

1Remote Sensing Center, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970 Porto Alegre RS, Brazil
2Centro Nacional de Pesquisas em Uva e Vinho, EMBRAPA, Bento Goncalves RS, Brazil

Contact the author

Keywords

Grapevine diseases, leaf reflectance, spectroradiometry, disease detection

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Effect of pH and ethanol on Lactiplantibacillus plantarum in red must fermentation: potential use of wine lees

Wine is the result of the alcoholic fermentation (AF) of grape must. Besides AF, wine can also undergo the malolactic fermentation (MLF) driven out by lactic acid bacteria (LAB). Among LAB, Oenococcus oeni and Lactiplantibacillus plantarum are the dominant species in wine. Even if O. oeni is the most common LAB undergoing MLF in wine, due to its high tolerance to wine conditions, L. plantarum can be used to undergo MLF in must. The moderate tolerance of L. plantarum to low pH and ethanol, may compromise the fermentative process in harsh wines.

Dry leaf hyperspectral reflectance predicts leaf elemental composition in grafted hybrids

Elemental composition, measured as the concentrations of different elements present in a given tissue at a given time point, is a key indicator of vine health and development. While elemental composition and other high-throughput phenotyping approaches yield tremendous insight into the growth, physiology, and health of vines, costs and labor associated with repeated measures over time can be cost-prohibitive. Recent advances in handheld sensors that measure hyperspectral reflectance patterns of leaf tissue may serve as an affordable proxy for other types of phenotypic data, including elemental composition. Here, we ask if reflectance patterns of dried Chambourcin leaf tissue from an experimental grafting vineyard can predict the known elemental composition of those leaves.

Understanding sweetness of dry wines: first evidence of astilbin isomers in red wines and quantitation in a one-century range of vintages

The gustatory balance of wines relies on sweetness, bitterness and sourness. In dry wines, sweetness does not result from the presence of residual sugar as in sweet wines, but is due to other non-volatile compounds. Such taste-active compounds are released during winemaking, by grapes, yeasts or oak wood and belong numerous chemical families [1]. Beyond this diversity, stereochemistry of molecules can also influence their sensory properties [2]. However, the molecular determinants associated with this taste have only been partially elucidated. Astilbin (2R, 3R) was recently reported to contribute to wine sweetness [3]. As its aglycon contains two stereogenic centers, three other stereoisomers may be present: neoisoastilbin (2S, 3R), isoastilbin (2R, 3S), and neoastilbin (2S, 3S). These compounds have already been observed in natural products, but never in wine. This work aimed at assaying their presence for the first time in wines as well as their taste properties.The isomers were synthesized from astilbin and purified by semi-preparative HPLC.

Hierarchy of the interactions between physical and biological parameters intervening in the Pyrenean Gascon foothill vineyard

Un travail sur les A.O.C. du piémont pyrénéen occidental permet de construire une hiérarchie de paramètres climatiques, géo-pédologiques, morphologiques, de saisir leurs niveaux d’interaction et d’élaborer une méthodologie pour proposer un zonage

EUGENOL AS QUALITY MARKER OF WINES AND SPIRITS FROM HYBRID VINES: IMPACT OF DIFFERENT WINEMAKING AND DISTILLATION PROCESSES

Eugenol, widely spread in various plants notably cloves, basil and bay, was identified too in wines from hybrid grapes without contact with oak wood. This aromatic molecule presents a strong spicy note of clove and also antifongic properties. Eugenol was described as an endogenous compound of Baco blanc, from the grapes to the spirits of Armagnac area. Moreover, this compound is a chemical marker of Baco blanc products quality.
Influences of harvest time and different winemaking processes (settling, use of enzymatic preparations, lees content and stock time before distillation) on Baco blanc wine eugenol contents were explored using a two-levels full factorial Design of Experiments (DoEs).