terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 The use of δ13C as an indicator of water use efficiency for the selection of drought tolerant grapevine varieties

The use of δ13C as an indicator of water use efficiency for the selection of drought tolerant grapevine varieties

Abstract

In the context of climate change with increasing evaporative demand, understanding the water use behavior of different grapevine cultivars is of critical importance. Carbon isotope discrimination (δ13C) measurements in wine provide a precise and integrated assessment of the water status of the vines during the sugar accumulation period in grape berries. When collected over multiple vintages on different cultivars, δ13C measurements can also provide insights into the effects of genotype on water use efficiency. More specifically, cultivars with more negative values of δ13C (indicating later stomatal regulation) in non-limiting conditions could reveal higher vulnerability to drought [1]. Thus, selecting varieties with less negative δ13C values in non-limiting conditions could be a potential lever for adaptation to climate change.

A 2-hectare parcel was planted with 84 red and white cultivars in 2013, in the Haut Médoc wine region (Bordeaux, France) within a commercial wine-growing estate. Among those 84 cultivars, 7 were vinified over 5 vintages, 19 over 4 vintages and 24 over 3 vintages, resulting in a dataset of δ13C of 50 different cultivars over 3 to 5 vintages. The varieties included all the traditional Bordeaux varieties, some common varieties of Spain and Portugal, as well as other widely planted French varieties.

The vintage effect was clearly shown in the analyses, with the wettest vintages expressing more negative values of δ13C than drier vintages. δ13C values were also significantly different depending on the cultivar, allowing for a characterization of the 50 cultivars for their water use efficiency in limiting and non-limiting conditions. These results provide insights in the strategy of the cultivar’s water use and could help identifying potential drought tolerant varieties.

  1. Plantevin, M., Gowdy, M., Destrac-Irvine, A., Marguerit, E., Gambetta, G. A., & van Leeuwen, C. (2022). Using δ13C and hydroscapes for discriminating cultivar specific drought responses. OENO One56(2), 239–250. https://doi.org/10.20870/oeno-one.2022.56.2.5434

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Marc Plantevin1, Yoann Merpault1, Mark Gowdy1, Gregory A. Gambetta1, Elisa Marguerit1, Julien Lecourt2, Cornelis van Leeuwen1

1EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France
2Pôle Scientifique, Bernard Margez Grands Vignobles, 33000 Bordeaux, France

Contact the author*

Keywords

climate change, δ13C, water use efficiency, drought tolerance, Vitis Vinifera

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

High-throughput sequencing analysis based on nematode indices revealed healthier soils of organic vineyards 

Proper soil health assessments are crucial for sustainable cropland. Among the widely employed approaches, evaluating nematode community structure is particularly suitable. Traditionally, the taxonomic characterization of soil nematodes has relied on time-consuming morphology-based methods requiring experienced experts. However, molecular tools like high-throughput sequencing have emerged as efficient alternatives. In this study, we performed a metataxonomic analysis of soil samples collected from 57 vineyards in the DOCa Rioja region of Northern Spain, focusing on the impact of organic viticulture and cover cropping compared to integrated pest management (IPM) and tilling practices.

Optimization of the ripening time of new varieties descendants of Monastrell

Given the impact of climate change on viticulture in the Region of Murcia, this paper attempts to expose the possibility of using genetic improvement as a dilemma that allows access to new descendant varieties of the autochthonous variety Monastrell crossed with varieties such as Syrah and Cabernet. Sauvignon, thus obtaining hybrids (Gebas and Myrtia). In it, the chromatic parameters and the phenolic profile of the new varieties will be compared with those obtained by the Monastrell variety at two moments during maturation (12 and 14 º Baumé), to check if the results would allow earlier harvests in these new varieties thus avoiding the decoupling between phenolic and technological maturity, while improving the quality of grapes and wines.

Drought responses of grapevine cultivars under different environments

Using grapevine genetic diversity is one of the strategies to adapt viticulture to climate change. In this sense, assessing the plasticity of cultivars in their responses to environmental conditions is essential. For this purpose, the drought tolerance of Grenache, Tempranillo and Semillon cultivars grafted onto SO4 was evaluated at two experimental vineyards, one located in Valencia (Spain) and the other in Bordeaux (France). This was done by assessing gas exchange parameters, water relations and leaf hydraulic traits at the end of the season.

The colour pattern of flower arrangements influence wine tasters’ sensory description

The arrangements of flowers and wine counterparts are inextricably linked. Whether a fundamental aspect of tablescaping or acolytes to broader entertainment rituals, they have an entangled history since ancient times. The aim of this contribution is to verify the influence of visually delicate and robust flower arrangements on individual description of wines. Changes in the sensory description of wines were investigated during subjects’ (thirty-two participants) exposure to three different conditions: the presence of delicate, robust, or totally absent flower arrangements. In each condition, the same two wines were blind tasted: a wine previously defined as delicate – a Pinot Noir from Australia, and a wine known for its robust character – a Tannat from Uruguay.

Response of red grape varieties irrigated during the summer to water availability at the end of winter in four Spanish wine-growing regions: berry phenolic composition

Water availability is the most limiting factor for vineyard productivity under Mediterranean conditions. Due to the effects caused by the current climate change, wine-growing regions may face serious soil moisture conservation problems, due to the lower water retention capacity of the soil and higher soil irradiation. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETo) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on berry phenolic composition at harvest.