Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Detection of spider mite using artificial intelligence in digital viticulture

Detection of spider mite using artificial intelligence in digital viticulture

Abstract

Aim: Pests have a high impact on yield and grape quality in viticulture. An objective and rapid detection of pests under field conditions is needed. New sensing technologies and artificial intelligence could be used for pests detection in digital viticulture. The aim of this work was to apply computer vision and deep learning techniques for automatic detection of spider mite symptoms in grapevine under field conditions. 

Methods and Results: RGB images of grapevine canopy attacked by the spider mite (Eotetranychus carpini Oud) were manually taken in commercial vineyard (Etxano, Basque Country, Spain) under natural day light conditions. Leaf segmentation in images was performed based on computer vision techniques, isolating target leaves with spider mite visual symptoms from the vineyard canopy. HSV colour space was used to consider colour variations representing symptoms on the leaves, separating these values from those of saturation and brightness of the image. Spider mite detection was done using Convolutional Neural Networks (CNN) models with an artificially augmented dataset for the classification of leaves with this pest symptoms. An accuracy surpassing 75% was obtained using a hold-out validation.

Conclusions: 

High accuracy proves the effectiveness of the trained model in the classification of grapevine leaves. Computer vision techniques were useful to image classification on the relevant pixels. Additionally, deep learning techniques provided a robust model to find complex features of spider mite visual symptoms.

Significance and Impact of the Study: Non-invasive technology and artificial intelligence shown promising results in the automatic detection of pests in commercial vineyards.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Inés Hernández1, Salvador Gutiérrez2, Sara Ceballos1, Ignacio Barrio1, Fernando Palacios1, Ana M. Diez-Navajas3, Javier Tardáguila1*

1Televitis Research Group. University of La Rioja, 26007 Logroño, Spain 
2Department of Computer Science and Engineering, University of Cádiz, 11519 Puerto Real, Spain 
3Department of Plant Production and Protection, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 01192 Arkaute, Spain

Contact the author

Keywords

Deep learning, computer vision, pests, grapevine, crop protection

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Cépage “Baga” région Bairrada. 2- De la conduite traditionnelle jusqu’au système ‘Lys’

Dans la Région de la Bairrada (Litoral-Centre du Portugal), on a étudié au 1999, l’influence des différents systèmes de conduite sur le cépage rouge “Baga”, le plus important de la Région.

Distinctive flavour or taint? The case of smoky characters in wine

Forest fires in the vicinity of vineyards have significantly increased in the last decade and are a concern for grapegrowers and winemakers in many wine producing countries. The fires cause smoke drift throughout vineyards which cannot be avoided and may result in the production of wines described as ‘smoke tainted’. Such wines are characterized by undesirable sensory characters described as ‘smoky’, ‘burnt’, ‘ash’ aromas and flavours, and also may cause a lingering, unpleasant ashy aftertaste [1; 2].

Terroir and sustainability: an analysis of brazilian vineyards from a territorial perspective

In the concept of sustainable viticulture proposed by the OIV, it can be noted that enhancing terroir is also one measure of sustainability. Thus, the territorial approach may offer an interesting viewpoint from which to consider this issue in a multi-perspective way.

Using a grape compositional model to predict harvest time and influence wine style

Linking wine composition to fruit composition is difficult due to the numerous biochemical pathways and substrate transformations that occur during fermentation

The impact of acetaldehyde on phenolic evolution of a free-SO2 red wine

Some wine producers, in good years, can produce free-SO2 red wines and decide to add the minimum amount of sulphur dioxide only at bottling. To manage this addition