Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Detection of spider mite using artificial intelligence in digital viticulture

Detection of spider mite using artificial intelligence in digital viticulture

Abstract

Aim: Pests have a high impact on yield and grape quality in viticulture. An objective and rapid detection of pests under field conditions is needed. New sensing technologies and artificial intelligence could be used for pests detection in digital viticulture. The aim of this work was to apply computer vision and deep learning techniques for automatic detection of spider mite symptoms in grapevine under field conditions. 

Methods and Results: RGB images of grapevine canopy attacked by the spider mite (Eotetranychus carpini Oud) were manually taken in commercial vineyard (Etxano, Basque Country, Spain) under natural day light conditions. Leaf segmentation in images was performed based on computer vision techniques, isolating target leaves with spider mite visual symptoms from the vineyard canopy. HSV colour space was used to consider colour variations representing symptoms on the leaves, separating these values from those of saturation and brightness of the image. Spider mite detection was done using Convolutional Neural Networks (CNN) models with an artificially augmented dataset for the classification of leaves with this pest symptoms. An accuracy surpassing 75% was obtained using a hold-out validation.

Conclusions: 

High accuracy proves the effectiveness of the trained model in the classification of grapevine leaves. Computer vision techniques were useful to image classification on the relevant pixels. Additionally, deep learning techniques provided a robust model to find complex features of spider mite visual symptoms.

Significance and Impact of the Study: Non-invasive technology and artificial intelligence shown promising results in the automatic detection of pests in commercial vineyards.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Inés Hernández1, Salvador Gutiérrez2, Sara Ceballos1, Ignacio Barrio1, Fernando Palacios1, Ana M. Diez-Navajas3, Javier Tardáguila1*

1Televitis Research Group. University of La Rioja, 26007 Logroño, Spain 
2Department of Computer Science and Engineering, University of Cádiz, 11519 Puerto Real, Spain 
3Department of Plant Production and Protection, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 01192 Arkaute, Spain

Contact the author

Keywords

Deep learning, computer vision, pests, grapevine, crop protection

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Topographic modeling with GIS at Serra Gaúcha, Brazil: elements to study viticultural terroir

Brazil is historically known at the international wine market as an importer, eventhough in the last decades there was an increase in quantity and quality of the internal production. Nowadays, about 40% of fine wines comsuption of the country are national ones. The main production region is called Serra Gaúcha, where the natural conditions are heterogeneous and viticulture is develloped in small properties, mainly done by the owners family.

The complex response of Mediterranean viticultural systems to climate change: a case study from France and Australia

Climate change could put at risk viticultural areas situated at the hotter margins of Vitis vinifera growth climatic range. We focus on two such regions with a Mediterranean climate

Egg allergens in wine. Validation of a new automated method for ovalbumin quantification

Ovalbumin (ova), a natural clarifying protein, is particularly suitable for clarifying red wines. It helps improve the tannic and polyphenolic stability of the wine by removing the most astringent tannins and contributing to soften and refine the structure. Ova binds to suspended particles, proteins, polysaccharides, and, to a lesser extent, tannins through electrostatic and hydrophobic interactions, forming large complexes that can be removed from the wine through fining and/or filtration before bottling.

Evaluation of field inoculation of Kocuria rhizophila and Streptomyces violaceoruber as biostimulants under water availability conditions in grapevines

Agricultural productivity must promote management systems that incorporate sustainability principles, and viticulture is no exception.