Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Detection of spider mite using artificial intelligence in digital viticulture

Detection of spider mite using artificial intelligence in digital viticulture

Abstract

Aim: Pests have a high impact on yield and grape quality in viticulture. An objective and rapid detection of pests under field conditions is needed. New sensing technologies and artificial intelligence could be used for pests detection in digital viticulture. The aim of this work was to apply computer vision and deep learning techniques for automatic detection of spider mite symptoms in grapevine under field conditions. 

Methods and Results: RGB images of grapevine canopy attacked by the spider mite (Eotetranychus carpini Oud) were manually taken in commercial vineyard (Etxano, Basque Country, Spain) under natural day light conditions. Leaf segmentation in images was performed based on computer vision techniques, isolating target leaves with spider mite visual symptoms from the vineyard canopy. HSV colour space was used to consider colour variations representing symptoms on the leaves, separating these values from those of saturation and brightness of the image. Spider mite detection was done using Convolutional Neural Networks (CNN) models with an artificially augmented dataset for the classification of leaves with this pest symptoms. An accuracy surpassing 75% was obtained using a hold-out validation.

Conclusions: 

High accuracy proves the effectiveness of the trained model in the classification of grapevine leaves. Computer vision techniques were useful to image classification on the relevant pixels. Additionally, deep learning techniques provided a robust model to find complex features of spider mite visual symptoms.

Significance and Impact of the Study: Non-invasive technology and artificial intelligence shown promising results in the automatic detection of pests in commercial vineyards.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Inés Hernández1, Salvador Gutiérrez2, Sara Ceballos1, Ignacio Barrio1, Fernando Palacios1, Ana M. Diez-Navajas3, Javier Tardáguila1*

1Televitis Research Group. University of La Rioja, 26007 Logroño, Spain 
2Department of Computer Science and Engineering, University of Cádiz, 11519 Puerto Real, Spain 
3Department of Plant Production and Protection, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 01192 Arkaute, Spain

Contact the author

Keywords

Deep learning, computer vision, pests, grapevine, crop protection

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Mechanisms involved in the heating of the environment by the aerodynamic action of a wind machine to protect a vineyard against spring frost

One of the main consequences of global warming is the rise of the mean temperature. Thus, the heat summation by the plants begins sooner in the early spring, and by cumulating growing degree-days, phenological development tends to happen earlier. However, spring frost is still a recurrent phenomenon causing serious damages to buds and therefore, threatening the harvests of the winegrowers. The wind machine is a solution to protect fruit crops against spring frost that is increasingly used. It is composed of a 10-m mast with a blowing fan at its peak. By tapping into the strength of the nocturnal thermal inversion, it sweeps the crop by propelling warm air above to the ground. Thus, stratification is momentarily suppressed. Furthermore, the continuous action of the machine, alone or in synergy, or the addition of a heater allow the bud to be bathed in a warmer environment. Also, the punctual action of the tower’s warm gust reaches the bud directly at each rotation period. All these actions allow the bud to continuously warm up, but with different intensities and over a different period. Although there is evidence of the effectiveness of the wind machines, the thermal transfers involved in those mechanisms raise questions about their true nature. Field measurements based on ultrasonic anemometers and fast responding thermocouples complemented by laboratory measurements on a reduced scale model allow to characterize both the airflow produced by the wind machine and the local temperature in its vicinity. Those experiments were realized in the vineyard of Quincy, in the framework of the SICTAG project. In the future paper, we will detail the aeraulic characterization of the wind machine and the thermal effects resulting from it and we will focus on how the wind machine warms up the local atmosphere and enables to reduce the freezing risk.

Identification and formation kinetic study of phenolic compounds-volatile thiols adducts by enzymatic oxidation

By using HPLC-ESI-MS, 1H, 13C and 2D NMR, new addition products between catechin, epicatechin, caftaric acid and 3SH were characterized. Caftaric acid formed more rapidly adducts with 3SH than catechin and epicatechin in the absence of other nucleophiles.

Understanding graft union formation by using metabolomic and transcriptomic approaches during the first days after grafting in grapevine

Since the arrival of Phyloxera (Daktulosphaira vitifolia) in Europe at the end of the 19th century, grafting has become essential to cultivate Vitis vinifera. Today, grafting provides not only resistance to this aphid, but it used to adapt the cultivars according to the type of soil, environment, or grape production requirements by using a panel of rootstocks. As part of vineyard decline, it is often mentioned the importance of producing quality grafted grapevine to improve vineyard longevity, but, to our knowledge, no study has been able to demonstrate that grafting has a role in this context. However, some scion/rootstock combinations are considered as incompatible due to poor graft union formation and subsequently high plant mortality soon after grafting. In a context of climate change where the creation of new cultivars and rootstocks is at the centre of research, the ability of new cultivars to be grafted is therefore essential. The early identification of graft incompatibility could allow the selection of non-viable plants before planting and would have a beneficial impact on research and development in the nursery sector. For this reason, our studies have focused on the identification of metabolic and transcriptomic markers of poor grafting success during the first days/week after grafting; we have identified some correlations between some specialized metabolites, especially stilbenes, and grafting success, as well as an accumulation of some amino acids in the incompatible combination. The study of the metabolome and the transcriptome allowed us to understand and characterise the processes involved during graft union formation.

Impact of grape maturity on esters content and sensory characters in wines fermented with yeast strains of different genetic backgrounds

Grapes composition is a factor well known to affect wines composition and sensory expression. The goal of this study was to evaluate how grapes composition modifications linked to maturity level could affect wines aromatic expression and esters composition.

A first look at the aromatic profile of “Monferace” wines

Grignolino, is a native Piedmont grape variety which well represents the historical and
enological identity of Monferrato, a territory between Asti and Casale Monferrato, included in the World Heritage List designated by UNESCO (1).