Terroir 2020 banner
IVES 9 IVES Conference Series 9 Preserving wine typicity in a climate change scenario: Examples from the Willamette Valley, Oregon

Preserving wine typicity in a climate change scenario: Examples from the Willamette Valley, Oregon

Abstract

Aims: Wine typicity is defined as a reflection of varietal origins, cultures and traditions of the wine. These aspects are many times also extremely important when considering a wines quality. However, as climate change occurs the typicity of wines may also change. With the long history of winemaking it is possible to define a wines typicity and how it has changed as climate alters. 

Methods and Results: This work investigated the typicity of Pinot noir wines from the Willamette Valley in Oregon over five consecutive vintages, 2012-2016.  Wines were selected that contained 100% Pinot noir from the specified sub-regions and the wines were made specifically to display typicity. Sensory analysis was conducted after the wines were in bottle for two years. Expert wine panellists participated in descriptive analysis to characterize the wines each year. While not all wines or panellists were available every year we had more than 80% similarity across all five sensory panels over the five-year study. Results showed that Pinot noir wines from the subregions did have overreaching characteristics, including those subregions that were known to be more variable based on topography and soil. The climate across the five vintages was varied. Oregon is traditionally considered a cool climate area but two vintages, 2014 and 2015 were significantly warmer and dryer than normal. Comparing the other vintages to these two as well as to historical information about Oregon Pinot noir show how climate does and does not affect wine typicity. Result showed characteristics that spanned all five vintages and agreed with historical information, while other characteristics were found to vary depending on the vintage.

Conclusions: 

While climate change has the potential to alter some aspects of typicity it was found it does not alter all aspects of wines typicity. Additionally, there are practices that can be used to mitigate climate change impacts to maintain typicity. 

Significance and Impact of the Study: Any understanding of how climate change can potentially alter wine typicity is needed to help the wine industry make decisions on their viticultural and winemaking practices as well as help determine long term strategies.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type: Video

Authors

Elizabeth Tomasino* and Aubrey DuBois

Oregon State University, Corvallis, United States

Contact the author

Keywords

Typicity, Pinot noir, climate change, mitigation

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Conservation of intravarietal diversity in France: exhaustive overview and perspectives

Since the renewal of the French vineyard after the Phylloxera crisis, the panorama of cultivated varieties has dramatically changed. This current genetic erosion is due to the increasing interest

Caractéristiques édaphiques et potentialités qualitatives des terroirs du vignoble languedocien

Dans le vignoble languedocien, les potentialités qualitatives des terroirs dépendent surtout de leurs caractéristiques édaphiques : la fertilité agronomique d’une part et sa nature géopédologique d’autre part.

Analysis of temporal variability of cv. Tempranillo phenology within Ribera del Duero Do (Spain) and relationships with climatic characteristics

The Ribera del Duero Designation of Origin (DO) has acquired great recognition during the last decades, being considered one of the highest quality wine producing regions in the world. This DO has grown from 6,460 ha of vineyards officially registered in 1985 to approximately 21,500 ha in 2013. The total grape production stands at around 90 million kg, with an average yield that approaches nearly 4,500 kg/ha. Most vineyards are cultivated under rainfed conditions.

A pragmatic modeling approach to assessing vine water status

Climate change scenarios suggest an increase in temperatures and an intensification of summer drought. Measuring seasonal plant water status is an essential step in choosing appropriate adaptations to ensure yields and quality of agricultural produce. The water status of grapevines is known to be a key factor for yield, maturity of grapes and wine quality. Several techniques exist to measure the water status of soil and plants, but stem water potential proved to be a simple and precise tool for different plant species.