Terroir 2020 banner
IVES 9 IVES Conference Series 9 Preserving wine typicity in a climate change scenario: Examples from the Willamette Valley, Oregon

Preserving wine typicity in a climate change scenario: Examples from the Willamette Valley, Oregon

Abstract

Aims: Wine typicity is defined as a reflection of varietal origins, cultures and traditions of the wine. These aspects are many times also extremely important when considering a wines quality. However, as climate change occurs the typicity of wines may also change. With the long history of winemaking it is possible to define a wines typicity and how it has changed as climate alters. 

Methods and Results: This work investigated the typicity of Pinot noir wines from the Willamette Valley in Oregon over five consecutive vintages, 2012-2016.  Wines were selected that contained 100% Pinot noir from the specified sub-regions and the wines were made specifically to display typicity. Sensory analysis was conducted after the wines were in bottle for two years. Expert wine panellists participated in descriptive analysis to characterize the wines each year. While not all wines or panellists were available every year we had more than 80% similarity across all five sensory panels over the five-year study. Results showed that Pinot noir wines from the subregions did have overreaching characteristics, including those subregions that were known to be more variable based on topography and soil. The climate across the five vintages was varied. Oregon is traditionally considered a cool climate area but two vintages, 2014 and 2015 were significantly warmer and dryer than normal. Comparing the other vintages to these two as well as to historical information about Oregon Pinot noir show how climate does and does not affect wine typicity. Result showed characteristics that spanned all five vintages and agreed with historical information, while other characteristics were found to vary depending on the vintage.

Conclusions: 

While climate change has the potential to alter some aspects of typicity it was found it does not alter all aspects of wines typicity. Additionally, there are practices that can be used to mitigate climate change impacts to maintain typicity. 

Significance and Impact of the Study: Any understanding of how climate change can potentially alter wine typicity is needed to help the wine industry make decisions on their viticultural and winemaking practices as well as help determine long term strategies.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type: Video

Authors

Elizabeth Tomasino* and Aubrey DuBois

Oregon State University, Corvallis, United States

Contact the author

Keywords

Typicity, Pinot noir, climate change, mitigation

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Eliminating Brettanomyces and lactic acid bacteria in wine: the potential of Ultra-High Pressure Homogenization (UHPH)

Ultra-High Pressure Homogenization (UHPH) is an innovative technology that can be seamlessly integrated at various stages of winemaking. Its application helps minimize or even eliminate the need for sulphites and other antimicrobial or antioxidant treatments, offering a faster and more sustainable alternative.

Techniques for sunburn reduction in bunches in Vitis vinifera L. cv. Graciano

Sunburn results from a combination of excessive photosynthetically active radiation (PAR) and UV radiation and temperature that can be exacerbated by other stress factors such as water deficit. Sunburn is a physiological disorder that affects the visual and organoleptic properties of grapes. The appearance of brown and necrotic spots severely affects the commercial value of the fruit, and in extreme cases, significantly decreases yield. This damage occurs with some frequency in sensitive varieties such as Graciano.

Berry weight loss in Vitis vinifera (L.) cultivars during ripening

Berry shriveling (BS) in vineyards are caused by numerous factors such as sunburn, dehydration, stem necrosis. Climate change results in an increase in day and night temperatures, rainfall throughout the year, changes in the timing and quantities, long dry summers and a combination of climatic variability such as floods, droughts and heatwaves). Grape development and its composition at harvest is influenced by the latter as grape metabolites are sensitive to the environmental conditions. The grape berry experiences water loss and an increase in flavour development as a result of the BS. An increased sugar content in grapes will result in higher alcohol wines and concentration of grape aromas which may be detrimental to the final wine quality.

Inactivated yeasts: a case study for the future of precision enology

Yeasts serve as highly versatile tools in oenology. They do more than just perform alcoholic fermentation. Nowadays, yeasts from various species, naturally present in grapes, are selected for specific non-fermentative applications. For example, the use of selected non-saccharomyces at the early stage of winemaking has become a common practice to limit the growth of unwanted microorganisms. When inactivated, yeasts can be fractionated into soluble and insoluble fractions providing a wide range of benefits related to structural components or specific metabolites.

DOES LIGNIN AN ACCEPTABLE MARKER OF GRAPESEED MATURATION AND QUALITY?

Usually the winemaker consider polyphenols from the grape berry as an actor of the wine quality. There are frequently consider as a marker of grape maturity. It is commonly known that winemaker consider tannins and anthocyanins as main polyphenol actors for winemaking practices and wine quality. Here we will focus on the characterisation of lignins in grape seeds. Previous studies suggest that the seed is lignified [1], which could explain the change in colour of the seed when it reaches maturity and thus provide a reliable indicator for describing the maturity stage in the seed.