Terroir 2020 banner
IVES 9 IVES Conference Series 9 Preserving wine typicity in a climate change scenario: Examples from the Willamette Valley, Oregon

Preserving wine typicity in a climate change scenario: Examples from the Willamette Valley, Oregon

Abstract

Aims: Wine typicity is defined as a reflection of varietal origins, cultures and traditions of the wine. These aspects are many times also extremely important when considering a wines quality. However, as climate change occurs the typicity of wines may also change. With the long history of winemaking it is possible to define a wines typicity and how it has changed as climate alters. 

Methods and Results: This work investigated the typicity of Pinot noir wines from the Willamette Valley in Oregon over five consecutive vintages, 2012-2016.  Wines were selected that contained 100% Pinot noir from the specified sub-regions and the wines were made specifically to display typicity. Sensory analysis was conducted after the wines were in bottle for two years. Expert wine panellists participated in descriptive analysis to characterize the wines each year. While not all wines or panellists were available every year we had more than 80% similarity across all five sensory panels over the five-year study. Results showed that Pinot noir wines from the subregions did have overreaching characteristics, including those subregions that were known to be more variable based on topography and soil. The climate across the five vintages was varied. Oregon is traditionally considered a cool climate area but two vintages, 2014 and 2015 were significantly warmer and dryer than normal. Comparing the other vintages to these two as well as to historical information about Oregon Pinot noir show how climate does and does not affect wine typicity. Result showed characteristics that spanned all five vintages and agreed with historical information, while other characteristics were found to vary depending on the vintage.

Conclusions: 

While climate change has the potential to alter some aspects of typicity it was found it does not alter all aspects of wines typicity. Additionally, there are practices that can be used to mitigate climate change impacts to maintain typicity. 

Significance and Impact of the Study: Any understanding of how climate change can potentially alter wine typicity is needed to help the wine industry make decisions on their viticultural and winemaking practices as well as help determine long term strategies.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type: Video

Authors

Elizabeth Tomasino* and Aubrey DuBois

Oregon State University, Corvallis, United States

Contact the author

Keywords

Typicity, Pinot noir, climate change, mitigation

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Immobilization of S. cerevisiae and O. œni for the control of wine fermentation steps

Controlling the speed of alcoholic (AF) and malolactic (MLF) fermentations in wine can be an important challenge for the production of certain short rotation wines for entry-level market segments. Immobilization techniques for Saccharomyces cerevisiae and Œnococcus œni, the microorganisms responsible for these fermentations, are widely studied for industrial applications. Indeed, these processes allow to accumulate biomass and thus to increase cell densities inducing high fermentation velocities. Recent works have shown the performance of MLF carried out with biofilms of O. œni, immobilized on various supports in a rich medium (MRSm: modified MRS broth with malic acid and fructose).

WINE WITHOUT ADDED SO₂: OXYGEN IMPACT AND EVOLUTION ON THE POLYPHENOLIC COMPOSITION DURING RED WINE AGING

SO₂ play a major role in the stability and wine during storage. Nowadays, the reduction of chemical input during red winemaking and especially the removing SO₂ is a growing expectation from the consumers. Winemaking without SO₂ is a big challenge for the winemakers since the lack of SO₂ affects directly the wine chemical evolution such as the phenolic compounds as well as its microbiological stability.

Overview on wine and health 32 years after the French paradox 

Phenolic compounds or polyphenols are the most abundant and ubiquitous secondary metabolites present in the plant kingdom with more than 8000 phenolic structures currently known. These compounds play an important role in plant growth and reproduction, providing protection against biotic and abiotic stress such as pathogen and insect attack, UV radiation and wounding. (poly)phenols are widely distributed in the human diet mainly in plant-derived food and beverages (fruits, vegetables, nuts, seeds, herbs, spices, tea and red wine).

Effects of soil characteristics on manganese transfer from soil to vine and wine

Aim: In recent times the export of Beaujolais wines has been jeopardised due to a limit of manganese content (Mn) in wine implemented by China (2 mg/L), related to suspicions of potassium permanganate fraud. Nevertheless, soil Mn content may be high in some soil types in Beaujolais. The aim of this study was to improve knowledge of manganese transfer from soil to vine and wine because data on this subject is scarce.

Development of a novel UAV based approach for assessing the severity of spring frost and hail damages in vineyards

A solid feature of climate change is that the frequency and severity of weather extremes are increasing. Ranking European countries for the number of crop failures related to extreme events reports France on top followed by Italy and Spain (COM 2021).