Terroir 2020 banner
IVES 9 IVES Conference Series 9 Chemical boundaries of wine identity: rationalizing grape and wine aroma diversity for improved terroir management

Chemical boundaries of wine identity: rationalizing grape and wine aroma diversity for improved terroir management

Abstract

Aims: Wine perceived quality lies on a number of different factors. Among these, sensory features, which are in turn dependent on chemical composition, play a primary role. There is traditionally a great emphasis on producing wines that have specific sensory profiles, particularly aroma, that reflect identity features connected to the place and the variety of origin. In the case of high quality wines there is also an expectation for enhances longevity. In this paper, we examine the main chemical drivers of wine geographical identity, its relationship with longevity and the (bio)chemical processes leading to their occurrence in wine. 

Methods and Results: results from different studies are covered, highlighting the importance of understanding the aroma chemical fingerprint of individual wine types in order to manage regional identity/terroir/cru expression accordingly. The contribution of different volatiles to the expression of typical aroma attributes is defined. 

Conclusions:

based on existing knowledge, the possibility to rationalize viticultural and winemaking practices to enhance the expression of aroma-relevant terroir features is limited to a restricted number of grape varieties. For most of the wines produced globally this process is still based on anectodal observations.

Significance and Impact of the Study: aroma chemical components to specific aroma attributes reflecting geographical identity and terroir are identified, in particular for different Italian wines.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Maurizio Ugliano*, Davide Slaghenaufi, Giovanni Luzzini, Jessica Samaniego Solis

Department of Biotechnology, University of Verona, via della Pieve, 70, 37029 San Pietro in Cariano (VR), Italy

Contact the author

Keywords

Wine aroma, geographical identity, terroir, terpenes, norisoprenoids, volatile sulfur compounds

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Un Système d’Informations à Références Spatiales sur le Vignoble. Un outil performant d’aide aux recherches sur la caractérisation des terroirs viticoles

The “Terroirs d’Anjou” project led by the Agronomy sector of the Vine and Wine Research Unit of the INRA center in Angers aims to characterize the viticultural terroirs in a study area which includes 29 municipalities in the Maine et Loire and cuts across the Anjou, Coteaux du layon and Coteaux de l’Aubance appellation areas.

From plant water status to wine flavonoid composition: a precision viticulture approach in a Sonoma county vineyard

Plant water status of grapevine plays a critical role in affecting berry and final wine chemical composition. The environmental variabilities existing in vineyard system have significant impacts on plant water status, but it is challenging to individualize environmental factors from the temporal and spatial variabilities in vineyard. Therefore, there is need to monitor the ecophysical variation through utilizing precision viticulture tools in order to minimize the separation in berry composition. This study aims at delineating vineyard into different management zones based on plant water status explained by soil texture, and utilize differential harvest to equilibrate the final berry and wine composition.

Qualité des vins et Terroirs. Incidence du milieu naturel sur la composition aromatique des vins

The northern vineyards produce wines with a high aromatic richness. The wines of Alsace are appreciated for the diversity of their aromas, the typicality of which was for a long time judged mainly according to the grape variety of origin. Alsatian winegrowers have however widely sensed the importance of the environment of the vine on the quality of the wines. Efforts are made to try to harmonize in a reasoned way the interaction between the natural environment and the plant material with a view to developing the character of the grape variety through the fine expression of the terroir and making the quality and typicality even more inimitable. wines produced in Alsace.

Xylem vessel blockages in grape pedicel growing in tropical climate observed by microtomography

In grape berry pedicel, xylem hydraulic conductance can be impaired by blockage deposition in the lumen of xylem elements. However, the varietal difference of the interruptions has not yet been characterized. In this preliminary work, we utilized synchrotron x-ray computed microtomography experiments performed at MOGNO beamline (LNLS – Brazil) to identify possible blockage sites in natural grape pedicel xylem. For this, we imaged dehydrated pedicel’s stem portion from the Niagara Rosada variety in three different phenological stages (Pre-veraison (PreV), veraison (V) and post-veraison (PostV). The reconstructed tridimensional images with a voxel size of 1.16 µm were segmented for the identification of xylem vessel lumens. After analysing one pedicel stem per stage, we identified 658 vessels without occlusion throughout his axial plane and 41 in which we could identify possible interruptions.

CHARACTERISTIC EXTRACTION OF THE PHENOL COMPOUNDS IN KOSHU (VITIS VINIFERA CV.) WINE DURING THE MACERATION

Koshu is one of the indigenous grape variety that has been grown in Japan for more than one thousand years. Recent research showed that it has 70% of Vitis vinifera genes. In 2010, the Koshu variety was included in ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine’ and has further fueled its popularity in Japan. It is the most cultivated variety for winemaking in Japan.
Koshu berries have light purple skins. The variety is mainly used to produce white wines such as an aromatic wine and a wine produced by sur lie method although various styles are produced.