Terroir 2020 banner
IVES 9 IVES Conference Series 9 Chemical boundaries of wine identity: rationalizing grape and wine aroma diversity for improved terroir management

Chemical boundaries of wine identity: rationalizing grape and wine aroma diversity for improved terroir management

Abstract

Aims: Wine perceived quality lies on a number of different factors. Among these, sensory features, which are in turn dependent on chemical composition, play a primary role. There is traditionally a great emphasis on producing wines that have specific sensory profiles, particularly aroma, that reflect identity features connected to the place and the variety of origin. In the case of high quality wines there is also an expectation for enhances longevity. In this paper, we examine the main chemical drivers of wine geographical identity, its relationship with longevity and the (bio)chemical processes leading to their occurrence in wine. 

Methods and Results: results from different studies are covered, highlighting the importance of understanding the aroma chemical fingerprint of individual wine types in order to manage regional identity/terroir/cru expression accordingly. The contribution of different volatiles to the expression of typical aroma attributes is defined. 

Conclusions:

based on existing knowledge, the possibility to rationalize viticultural and winemaking practices to enhance the expression of aroma-relevant terroir features is limited to a restricted number of grape varieties. For most of the wines produced globally this process is still based on anectodal observations.

Significance and Impact of the Study: aroma chemical components to specific aroma attributes reflecting geographical identity and terroir are identified, in particular for different Italian wines.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Maurizio Ugliano*, Davide Slaghenaufi, Giovanni Luzzini, Jessica Samaniego Solis

Department of Biotechnology, University of Verona, via della Pieve, 70, 37029 San Pietro in Cariano (VR), Italy

Contact the author

Keywords

Wine aroma, geographical identity, terroir, terpenes, norisoprenoids, volatile sulfur compounds

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Changes in white wine composition after treatment with cationic exchange resin: impact on wine oxidation after 8 years of bottle storage

Samples from 3 wine types were treated with a cationic exchange resin (7 lots) and stored for 8 years (47 samples). Forty-seven parameters were determined, including (1) important substrates with impact in white wine oxidation and (2) markers of oxidation. From group 1, sugars, elements, phenolic compounds, α-dicarbonyls and SO2 and from group 2, browning (A420), acetaldehyde, alkanals, furanic compounds were quantified.

Design of an indicator of vine vigor potential conferred by soil (vipos), using a fuzzy expert system

Winegrowers must adapt more and more their viticultural practices in order to evolve toward a sustainable viticulture, to be competitive and to improve both the production methods and the quality and typicalness of wines. In this context, ‘Terroir’ studies in Loire Valley vineyards have allowed to build decision aid maps that can be used directly by growers to adjust their practices.

Proposal of a procedure for sensory characterisation of wines from different subareas of a same D.O.C. (V.Q.P.R.D.)

In the course of the present work, which is the first part of a study on the “characterization of Barbera dell’Oltrepo Pavese D.O.C.” 30 wines Barbera from 1993 vintage have been compared only regarding their sensory characteristics. An unstructured scale card, composed by 15 descriptors have been used.

Modulation of the tannic structure of Tannat wines through maceration techniques: cross analytical and sensory study

The Tannat grape, native to the foothills of the Pyrenees in France, is known for producing wines with intense colour, exceptional tannic structure, and remarkable aging potential. These distinctive characteristics are attributed to its unique genome, making Tannat one of the grape varieties with the highest tannins concentration.

NACs intra-family hierarchical transcriptional regulatory network orchestrating grape berry ripening

Considering that global warming is changing berry ripening timing and progression, uncovering the molecular mechanisms and identifying key regulators governing berry ripening could provide important tools in maintaining high quality grapes and wine. NAC (NAM/ATAF/CUC) transcription factors represent an interesting family due to their key role in the developmental processes control, such as fruit-ripening-associated genes expression, and in the regulation of multiple stress responses. Between the 74 NAC family members, we selected 12 of them as putative regulators of berry ripening: NAC01, NAC03, NAC05, NAC11, NAC13, NAC17, NAC18, NAC26, NAC33, NAC37, NAC60 and NAC61.