Terroir 2020 banner
IVES 9 IVES Conference Series 9 Chemical boundaries of wine identity: rationalizing grape and wine aroma diversity for improved terroir management

Chemical boundaries of wine identity: rationalizing grape and wine aroma diversity for improved terroir management

Abstract

Aims: Wine perceived quality lies on a number of different factors. Among these, sensory features, which are in turn dependent on chemical composition, play a primary role. There is traditionally a great emphasis on producing wines that have specific sensory profiles, particularly aroma, that reflect identity features connected to the place and the variety of origin. In the case of high quality wines there is also an expectation for enhances longevity. In this paper, we examine the main chemical drivers of wine geographical identity, its relationship with longevity and the (bio)chemical processes leading to their occurrence in wine. 

Methods and Results: results from different studies are covered, highlighting the importance of understanding the aroma chemical fingerprint of individual wine types in order to manage regional identity/terroir/cru expression accordingly. The contribution of different volatiles to the expression of typical aroma attributes is defined. 

Conclusions:

based on existing knowledge, the possibility to rationalize viticultural and winemaking practices to enhance the expression of aroma-relevant terroir features is limited to a restricted number of grape varieties. For most of the wines produced globally this process is still based on anectodal observations.

Significance and Impact of the Study: aroma chemical components to specific aroma attributes reflecting geographical identity and terroir are identified, in particular for different Italian wines.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Maurizio Ugliano*, Davide Slaghenaufi, Giovanni Luzzini, Jessica Samaniego Solis

Department of Biotechnology, University of Verona, via della Pieve, 70, 37029 San Pietro in Cariano (VR), Italy

Contact the author

Keywords

Wine aroma, geographical identity, terroir, terpenes, norisoprenoids, volatile sulfur compounds

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Arinto clones tolerant to climate change: in depth transcriptomic study of tolerant and sensitive genotypes

Drought and heat waves deriving from climate change have been affecting grapevine plants and altering wine characteristics in the past years, and effects are expected to get worst. Innovative approaches to address this problem have been undertaken in several varieties, that consist in exploring intravarietal variability to identify genotypes that are tolerant to abiotic stress. Such is the case of the variety Arinto, where an experimental population of 165 clones installed according to a resolvable row-column design with 6 replicates, was scanned for several parameters, including surface leaf temperature (SLT). Linear mixed models were fitted to the data of the traits evaluated, and the empirical best linear unbiased predictors (EBLUPs) of genotypic effects for each trait were obtained as well as the coefficient of genotypic variation (CVG) and broad sense heritability.

Incidences of the climate, the soil and the harvest date on Colombard aromatic potential in Gascony

This experiment tries to characterize the role of soil, climate and harvest date on the composition of grape-derivated thiols, 3-mercapto-hexanol (3MH) and 3-mercapto-hexile acetate (A3MH), in the white wines from Colombard varieties in Gascony (South-West of France). A network of 6 plots has been observed since 1999 on different pedologic units. The plots have common agronomical characteristics, plantation spacing (2,900 to 3,500 vines per ha), plantation aging (1985-1990), strength conferred by rootstock (SO4, RSB), soil management (grass covered 1 by 2) and training system (vertical shoot positionning pruned in single Guyot). Meteorological stations are located near the plots.

Identification and biological properties of new resveratrol derivatives formed in red wine

Resveratrol is a well-known wine constituent with a wide range of activities. In wines, resveratrol can be oxidized to form various derivatives including oligomers [1]. In this study, resveratrol derivative transformation in hydroalcoholic solution was investigated by oxidative coupling using metals. De novo resveratrol derivatives were synthetized and analysed by NMR and MS experiments

WINE FERMENTATION METABOLITES PRODUCED BY TWO TORULASPORA DELBRUECKII STRAINS ISOLATED FROM OKANAGAN VALLEY, BC, CANADA VINEYARDS

Wine aroma is influenced by various factors, from agricultural practices in the vineyard to the enological choices made by winemakers throughout the vinification process. Spontaneous fermentations have a characteristically deeper complexity of aromas when compared to fermentations that have been inoculated with Saccharomyces (S.) cerevisiae because of the diversity of microflora naturally present on grape skins. Non-Saccharomyces yeast are being extensively studied for their ability to positively contribute to wine aroma and flavour. These yeasts are known to liberate more bound volatile compounds present in grape must than S. cerevisiae through the enzymatic action of β-glucosidases and β-lyases1.

Contribution of grape seeds to evolution of acetaldehyde, pigments and tannins reactive towards salivary proteins of red wine over time

This study investigated the impact of the gsk/gse ratio on the evolution of acetaldehyde and of major phenolic compounds of aglianico wine in wine like solution and real wine. Four model solutions and the correspondant control wines were prepared. The natural weight ratio between grape skins and seeds was determined on the real grapes, and a control wine was obtained from those.