Terroir 2020 banner
IVES 9 IVES Conference Series 9 The effects of calcite silicon-mediated particle film application on leaf temperature and grape composition of Merlot (Vitis vinifera L.) vines under different irrigation conditions

The effects of calcite silicon-mediated particle film application on leaf temperature and grape composition of Merlot (Vitis vinifera L.) vines under different irrigation conditions

Abstract

OENO One – Special issue

This study examined whether the application of calcite-silicon mediated particle film (CaPF) at veraison can mitigate a drought-induced increase in leaf temperature on grapevine, thus contributing to improved leaf functionality, yield and grape composition traits. A total of 48 five-year-old Merlot (Vitis vinifera L.) vines grafted onto SO4 were grown (in 20 L PVC pots) under Mediterranean conditions (Southern Italy). The vines were pruned to two spurs with two winter buds irrigated daily to 100 % field capacity, and fertilised weekly. At veraison and using a 2×2 factorial experimental design, the two main factors, thermoregulation and water, were imposed at two levels: spraying with a thermoregulation compound (CaPF) and no spraying (NS); irrigation (WW) and drought stress (D)). A group of 24 vines was subjected to a 15-day drought period by receiving, every day, 25 % (D) of the daily water consumption of WW vines. The other 24 vines continued to be fully irrigated on a daily basis (WW). Twelve vines per group were sprayed (WW+CaPF, D+CaPF) with calcite-silicon mediate (3 % V/V) at the beginning of drought imposition, the remaining 24 vines were not sprayed (WW-NS, D-NS). Soil water moisture and stem water potential values were monitored from 11.30 to 13:30 nearly every week, and other vegetative and reproductive parameters were also measured. During the experiment, air temperature peaked at ≈35 °C at midday, VPD at about 3.7 kPa and PAR reached ≈2000 µmol m-2 s–1. Results show that in CaPF sprayed vines, leaf-air temperature differences were lower than in unsprayed vines in both irrigated and drought stressed groups. WW+CaPF vines retained significantly more leaf area and showed the highest value of accumulated vine transpiration. Calcite-silicon mediated particle film could enhance the resilience of grapevine to adverse environmental conditions and may contribute to preserve terroir elements in highly reputed wine grape growing areas. The study showed that foliar application of calcite silicon-mediated processed particles films can be used in arid regions to mitigate leaf temperatures in grapevines.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type: Video

Authors

Davide Amato1, Giuseppe Montanaro1,*, Stephan Summerer2, Nunzio Briglia1, Faouzi Attia3, Emmanuel Challet3 and Vitale Nuzzo1

1Università degli Studi della Basilicata, Dipartimento delle Culture Europee e del Mediterraneo, via Lanera, 20, 75100 Matera, Italy
2ALSIA – Metapontum Agrobios, S.S. Ionica 106, km 448.2, 75010 Metaponto (MT), Italy
3Équipe Recherches agronomiques, Agronutrition, 3 avenue de l’Orchidée, Parc Activestre, 31390 Carbonne, France

Contact the author

Keywords

leaf area, abiotic stress, Merlot/SO4, particle films, stem water potential, vine transpiration

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

A.O.C. huile d’olive de Nyons et olives noires de Nyons

A.O.C. huile d’olive de Nyons et olives noires de Nyons

The effect of water stress deficit on ‘Xynisteri’ grapes through systems biology approaches

Cyprus is one of the very few phyloxera-free areas worldwide where the vast majority of vines are own-rooted and non-irrigated. ‘Xynisteri’ is a predominant indigenous cultivar, particularly amenable to extreme conditions such as drought and hot climate, thus rendering it appropriate for marginal soils and adverse climatic conditions. In the current work, a comparative study between irrigated (irrigation initiated at BBCH 71) and non-irrigated vines was conducted.

PROFILING OF LIPIDS IN WINES FROM MONOCULTURE FERMENTATION WITH INDIGENOUS METSCHNIKOWIA YEAST SPECIES

Lipids are a diverse group of organic compounds essential for living systems. They are vital compounds for yeast which makes them an important modulator of yeast metabolism in alcoholic fermentation. This study presents a comprehensive lipidome analysis of wine samples from the Vitis vinifera L., Maraština. The fermentation trails were set up in monoculture with different indigenous yeast strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes: Metschnikowia pulcherrima, Metshnikowia sinensis/shanxiensis , and Metschnikowia chyrsoperlae.

Glutathione content evolution during spontaneous alcoholic fermentations of Sangiovese grapes

Glutathione is a tripeptide (γ-Glu-Cys-Gly), which can occur in grapes, in must and in wine prevalently in the reduced form as well as in the oxidized form as glutathione disulfide. The importance of the reduced form of glutathione lies in its antioxidant activity. In must, it limits browning by reducing o-quinones produced by polyphenol oxidase activity on hydroxycinnamic acids; in wine, it exerts a protective effect on various aromatic compounds. Glutathione concentration in wine is lower than in grape juice and variable as it depends on several factors, ranging from the native content of grapes to winemaking technique.

Genetic determinism of grapevine development stages as a tool for the adaptation to climate change

A major goal of modern grapevine (Vitis vinifera L.) breeding programs is the introgression of resistance genes along with desirable traits for better adaptation to climate change. Developmental stages have an impact on yield components and berry composition and are expected to shift towards earlier dates in the future. We investigated the genetic determinism of phenological stages in the progeny of a cross between two grapevine hybrids, each carrying several quantitative trait loci (QTL) for downy mildew and powdery mildew resistance.