Terroir 2020 banner
IVES 9 IVES Conference Series 9 The effects of calcite silicon-mediated particle film application on leaf temperature and grape composition of Merlot (Vitis vinifera L.) vines under different irrigation conditions

The effects of calcite silicon-mediated particle film application on leaf temperature and grape composition of Merlot (Vitis vinifera L.) vines under different irrigation conditions

Abstract

OENO One – Special issue

This study examined whether the application of calcite-silicon mediated particle film (CaPF) at veraison can mitigate a drought-induced increase in leaf temperature on grapevine, thus contributing to improved leaf functionality, yield and grape composition traits. A total of 48 five-year-old Merlot (Vitis vinifera L.) vines grafted onto SO4 were grown (in 20 L PVC pots) under Mediterranean conditions (Southern Italy). The vines were pruned to two spurs with two winter buds irrigated daily to 100 % field capacity, and fertilised weekly. At veraison and using a 2×2 factorial experimental design, the two main factors, thermoregulation and water, were imposed at two levels: spraying with a thermoregulation compound (CaPF) and no spraying (NS); irrigation (WW) and drought stress (D)). A group of 24 vines was subjected to a 15-day drought period by receiving, every day, 25 % (D) of the daily water consumption of WW vines. The other 24 vines continued to be fully irrigated on a daily basis (WW). Twelve vines per group were sprayed (WW+CaPF, D+CaPF) with calcite-silicon mediate (3 % V/V) at the beginning of drought imposition, the remaining 24 vines were not sprayed (WW-NS, D-NS). Soil water moisture and stem water potential values were monitored from 11.30 to 13:30 nearly every week, and other vegetative and reproductive parameters were also measured. During the experiment, air temperature peaked at ≈35 °C at midday, VPD at about 3.7 kPa and PAR reached ≈2000 µmol m-2 s–1. Results show that in CaPF sprayed vines, leaf-air temperature differences were lower than in unsprayed vines in both irrigated and drought stressed groups. WW+CaPF vines retained significantly more leaf area and showed the highest value of accumulated vine transpiration. Calcite-silicon mediated particle film could enhance the resilience of grapevine to adverse environmental conditions and may contribute to preserve terroir elements in highly reputed wine grape growing areas. The study showed that foliar application of calcite silicon-mediated processed particles films can be used in arid regions to mitigate leaf temperatures in grapevines.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type: Video

Authors

Davide Amato1, Giuseppe Montanaro1,*, Stephan Summerer2, Nunzio Briglia1, Faouzi Attia3, Emmanuel Challet3 and Vitale Nuzzo1

1Università degli Studi della Basilicata, Dipartimento delle Culture Europee e del Mediterraneo, via Lanera, 20, 75100 Matera, Italy
2ALSIA – Metapontum Agrobios, S.S. Ionica 106, km 448.2, 75010 Metaponto (MT), Italy
3Équipe Recherches agronomiques, Agronutrition, 3 avenue de l’Orchidée, Parc Activestre, 31390 Carbonne, France

Contact the author

Keywords

leaf area, abiotic stress, Merlot/SO4, particle films, stem water potential, vine transpiration

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Bio-acidification of wines by Lachancea thermotolerans

Insufficient acidity in grapes from warm climates/vintages is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. An alternative approach involves bio-acidification with the yeast Lachancea thermotolerans (LT) via lactic acid production during fermentation.

Microwaves, an auxiliary tool to improve red wine quality in warm climates

AIM Current winery efforts in Spanish warm climate regions, as Andalusia, are aimed at red wine production in spite of sub-optimal climatological conditions

The current state and prospects for the development of viticulture and winemaking in Greece

Viticulture in Greece is the oldest, but in recent years there has been a reduction of areas intended for the production of wine products. The article contains data on viticulture in Greece. Over time, the land of Greek vineyards is fluctuating. There is a trend towards a decrease in areas in connection with the quota of products from the EU.

Climate change, regional adaptation necessities and impact on grape and wine composition – an integrated view on a moving target

Grapevines are cultivated on 6 out of 7 continents, roughly between latitudes 4° and 56° in the Northern Hemisphere and between 6° and 42° in the Southern Hemisphere across a large diversity of climates (oceanic, warm oceanic, transition temperate, continental, cold continental, Mediterranean, subtropical, attenuated tropical, and arid climates).