Terroir 2020 banner
IVES 9 IVES Conference Series 9 The effects of calcite silicon-mediated particle film application on leaf temperature and grape composition of Merlot (Vitis vinifera L.) vines under different irrigation conditions

The effects of calcite silicon-mediated particle film application on leaf temperature and grape composition of Merlot (Vitis vinifera L.) vines under different irrigation conditions

Abstract

OENO One – Special issue

This study examined whether the application of calcite-silicon mediated particle film (CaPF) at veraison can mitigate a drought-induced increase in leaf temperature on grapevine, thus contributing to improved leaf functionality, yield and grape composition traits. A total of 48 five-year-old Merlot (Vitis vinifera L.) vines grafted onto SO4 were grown (in 20 L PVC pots) under Mediterranean conditions (Southern Italy). The vines were pruned to two spurs with two winter buds irrigated daily to 100 % field capacity, and fertilised weekly. At veraison and using a 2×2 factorial experimental design, the two main factors, thermoregulation and water, were imposed at two levels: spraying with a thermoregulation compound (CaPF) and no spraying (NS); irrigation (WW) and drought stress (D)). A group of 24 vines was subjected to a 15-day drought period by receiving, every day, 25 % (D) of the daily water consumption of WW vines. The other 24 vines continued to be fully irrigated on a daily basis (WW). Twelve vines per group were sprayed (WW+CaPF, D+CaPF) with calcite-silicon mediate (3 % V/V) at the beginning of drought imposition, the remaining 24 vines were not sprayed (WW-NS, D-NS). Soil water moisture and stem water potential values were monitored from 11.30 to 13:30 nearly every week, and other vegetative and reproductive parameters were also measured. During the experiment, air temperature peaked at ≈35 °C at midday, VPD at about 3.7 kPa and PAR reached ≈2000 µmol m-2 s–1. Results show that in CaPF sprayed vines, leaf-air temperature differences were lower than in unsprayed vines in both irrigated and drought stressed groups. WW+CaPF vines retained significantly more leaf area and showed the highest value of accumulated vine transpiration. Calcite-silicon mediated particle film could enhance the resilience of grapevine to adverse environmental conditions and may contribute to preserve terroir elements in highly reputed wine grape growing areas. The study showed that foliar application of calcite silicon-mediated processed particles films can be used in arid regions to mitigate leaf temperatures in grapevines.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type: Video

Authors

Davide Amato1, Giuseppe Montanaro1,*, Stephan Summerer2, Nunzio Briglia1, Faouzi Attia3, Emmanuel Challet3 and Vitale Nuzzo1

1Università degli Studi della Basilicata, Dipartimento delle Culture Europee e del Mediterraneo, via Lanera, 20, 75100 Matera, Italy
2ALSIA – Metapontum Agrobios, S.S. Ionica 106, km 448.2, 75010 Metaponto (MT), Italy
3Équipe Recherches agronomiques, Agronutrition, 3 avenue de l’Orchidée, Parc Activestre, 31390 Carbonne, France

Contact the author

Keywords

leaf area, abiotic stress, Merlot/SO4, particle films, stem water potential, vine transpiration

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Simgi® platform as a tool for the study of wine active compounds in the  gastrointestinal tract

Simgi® platform pursues the need for dynamic in vitro simulation of the human gastrointestinal tract optimized and adapted to food safety and health fields. The platform has confirmed the model’s suitability since its first’s studies with the consistency between the simulated colonic metabolism of wine polyphenols and the metabolic evolution observed with the intake of wine in human intervention studies [1]. 

French wine sector facing climate change (part. 2) : the implementation of the national strategy

This summary follows this made by Hervé Hannin et al. Entitled “French wine sector facing climate change (part. 1) : a national strategy built on a foresight and participatory approach “. The french wine sector has taken a collective approach to the issue of climate change, and has officially submitted its strategy to the minister of agriculture in 2021. This industry policy is the result of multidisciplinary work carried out through the “laccave” project (metaprogramme accaf, inrae) and its prospective study designed to anticipate climate change in the french wine industry (aigrain p. Et al., 2016). French wine professionals decided to structure a strategy to deal with climate change du in particular to the presentation made at the 2016 OIV congress in Brazil.

Ceramic imprint in wine: influence of hydraulic ratio on ceramic dissolution and wine pH in amphorae systems

This interaction is primarily due to an acidic attack on the ceramic by the wine. It results in (1) the dissolution of the ceramic into the wine and the release of a wide variety of elements; and (2) an increase of the wine pH. The extent of these effects depends on the mineralogical and chemical composition of the ceramic, as well as the hydraulic ratio of the ceramic-wine system (the term hydraulic ratio (ρ) defines here the volume of wine over the surface area of the ceramic in contact with the wine).

Zoning mountain landscapes for a valorisation of high identity products

Mountain agriculture is made difficult by the geomorphological complexity of the territory. This is especially true for viticulture: over the centuries the work of men in such a difficult environment

Ripening of Mencía grape cultivar in different edaphoclimatic situations (D.O. Ribeira Sacra, Spain)

Ribeira Sacra is a Spanish Denominación de Origen (D.O.) for wines, located in Galicia, NW Spain.