Terroir 2020 banner
IVES 9 IVES Conference Series 9 Terroir in Tasting: A sensory approach for marketing fine Australian wines of provenance as memorable experiences

Terroir in Tasting: A sensory approach for marketing fine Australian wines of provenance as memorable experiences

Abstract

Aims: Establishing an image of fine wine through the Geographical Indication (GI) system is of interest to the Australian wine sector. Beyond provenance, the sensory experience of fine wine is often linked to consumption with appropriate foods. For this purpose, studies were undertaken to understand consumer perceptions of what constitutes a fine wine, which sensory and chemical factors may define fine Australian Chardonnay and Shiraz wines from various regions, the sensory attributes driving appropriate food and wine pairings, and how these relate to consumer perceptions of provenance, the overall consumer experience and memorability. 

Methods and Results: An online survey was conducted with Australian wine consumers (n = 349) to generate a consumer driven definition of fine Australian wine (FAW) based on sensory attributes, grape variety, wine region, label information, and food pairing, and to assess how that definition differs as a function of consumer wine involvement. Overall, consumers valued provenance, and highly involved wine Enthusiasts appeared to utilise more information and had broader sensory vocabularies than Aspirant and No Frills consumers. Exploring the regional typicality of commercially available FAW, Chardonnay wines (2015 vintage) from Margaret River (n = 16) and Yarra Valley (n = 16); and Shiraz wines (2014 vintage) from Barossa Valley (n = 16) and McLaren Vale (n = 15), were selected for descriptive sensory analysis and underwent profiling of volatiles by gas chromatography-mass spectrometry. For both grape varieties, there was large variability in wine styles within the same GI, meaning winemaking intervention is important for regional/sub-regional typicality, which therefore cannot be determined solely on geographic origin of the fruit. Nonetheless, a combination of sensory markers and volatile profiles allowed the building of regional typicality models, although consumers may not perceive subtle sub-regional differences in sensory attributes. The food and wine pairing-related gastronomic experiences were explored under blind and informed (wine provenance) conditions. Based on descriptive analyses, specific food and wine pairings (n = 8) were selected for consumer tastings (n = 151), which explored the pre-consumption, core-consumption, and post-consumption experiences in relation to the sensory profiles of the pairings. During core-consumption, information level significantly impacted ratings for sensory complexity and a range of emotions. Appropriate pairings corresponded with increased liking, sensory complexity, and expected prices for wine, and evoked emotions of positive valence. In the post-consumption experience, information level affected the vividness of the tasting, whereas the most appropriate pairings commanded significant vividness, remembered liking, memorability, and loyalty ratings.

Conclusion: 

Although regional typicality can be modelled using volatile composition and sensory attributes, consumers may not perceive these differences in tasting. The results from this study of sensory profiles and preferred food pairings for FAW from several regions can help the wine production, marketing and hospitality sectors tailor their services and communications to incorporate fine wines in their region-specific marketing. Consequently, appropriate food and wine pairings may be an important marketing strategy to develop and promote provenance and positive gastronomic experiences, and using a Wine:Food strategy, rather than wine alone, could provide wine businesses with higher customer satisfaction and spending

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Marcell Kustos1*, David W. Jeffery1, Steven Goodman2, Hildegarde Heymann3, Susan E.P. Bastian1

1School of Agriculture, Food and Wine, The University of Adelaide (UA), Waite Research Institute, PMB 1, Glen Osmond, South Australia 5064 Australia
2Business School, The University of Adelaide, South Australia 5005 Australia
3Department of Viticulture and Enology, University of California at Davis, One Shields Avenue, Davis, CA 95616-5270, USA

Contact the author

Keywords

Wine attributes, sensory memory, food pairing, emotion measurement, wine marketing, wine business

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Mechanisms involved in the heating of the environment by the aerodynamic action of a wind machine to protect a vineyard against spring frost

One of the main consequences of global warming is the rise of the mean temperature. Thus, the heat summation by the plants begins sooner in the early spring, and by cumulating growing degree-days, phenological development tends to happen earlier. However, spring frost is still a recurrent phenomenon causing serious damages to buds and therefore, threatening the harvests of the winegrowers. The wind machine is a solution to protect fruit crops against spring frost that is increasingly used. It is composed of a 10-m mast with a blowing fan at its peak. By tapping into the strength of the nocturnal thermal inversion, it sweeps the crop by propelling warm air above to the ground. Thus, stratification is momentarily suppressed. Furthermore, the continuous action of the machine, alone or in synergy, or the addition of a heater allow the bud to be bathed in a warmer environment. Also, the punctual action of the tower’s warm gust reaches the bud directly at each rotation period. All these actions allow the bud to continuously warm up, but with different intensities and over a different period. Although there is evidence of the effectiveness of the wind machines, the thermal transfers involved in those mechanisms raise questions about their true nature. Field measurements based on ultrasonic anemometers and fast responding thermocouples complemented by laboratory measurements on a reduced scale model allow to characterize both the airflow produced by the wind machine and the local temperature in its vicinity. Those experiments were realized in the vineyard of Quincy, in the framework of the SICTAG project. In the future paper, we will detail the aeraulic characterization of the wind machine and the thermal effects resulting from it and we will focus on how the wind machine warms up the local atmosphere and enables to reduce the freezing risk.

Plastid genomics of Vitis vinifera L. for understanding the molecular basis of  grapevine (Vitis vinifera L.) domestication

The precise molecular mechanisms underlying the domestication of grapevine (Vitis vinifera L.) Are still not fully understood. In the recent years, next-generation sequencing (NGS) of plastid genomes has emerged as a powerful and increasingly effective tool for plant phylogenetics and evolution. To uncover the biological profile of the grapevine domestication process comprehensively, an investigation should encompass both the cultivated varieties (V. vinifera subsp. Vinifera) and their wild ancestors V. vinifera subsp. Sylvestris) across all potential sites of their distribution and domestication.

The evolution of wine tourism: trends, challenges and opportunities for the future

The wine tourism industry has experienced significant transformation over the past years, accelerated by the COVID-19 pandemic.

VINIoT – Precision viticulture service

The project VINIoT pursues the creation of a new technological vineyard monitoring service, which will allow companies in the wine sector in the SUDOE space to monitor plantations in real time and remotely at various levels of precision. The system is based on spectral images and an IoT architecture that allows assessing parameters of interest viticulture and the collection of data at a precise scale (level of grape, plant, plot or vineyard) will be designed. In France, three subjects were specifically developed: evaluation of maturity, of water stress, and detection of flavescence dorée. For the evaluation of maturity, it has been decided first to work at the berry scale in the laboratory, then at the bunch scale and finally in the vineyard. The acquisition of the spectral hyperstal image as well as the reference analyzes to measure the maturity, were carried out in the laboratory after harvesting the berries in a maturity monitoring context. This work focuses on a case study to predict sugar content of three different grape varieties: Syrah, Fer Servadou and Mauzac. A robust method called Roboost-PLSR, developed in the framework of this work (Courand et al., 2022), to improve prediction model performance was applied on spectra after the acquirement of hyperspectral images. Regarding the evaluation of water stress, to work with a significant variability in terms of water status, it has been worked first with potted plants under 2 different water regimes. The facilities have allowed the supervision of irrigation and micro-climatic conditions. The regression models on agronomic variables (stomatal conductance, water potential, …) are studied. To detect flavescence dorée, the experimental plan has consisted of work at leaf scale in the laboratory first, and then in the field. To detect the disease from hyper-spectral imaging, a combination of multivariate curve resolution-alternating least squares (MCR-ALS) and factorial discriminant analysis (FDA) was proposed. This strategy proved the potential towards the discrimination of healthy and infected leaves by flavescence dorée based on the use of hyperspectral images (Mas Garcia et al., 2021).

Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Ultraviolet radiation (UVR) is a minor part of the solar spectrum, but it represents an important ecological factor that influences many biological processes related to plant growth and development. In recent years, the application of UVR in agriculture and food production is emerging as a clean and environmentally friendly technology.
In grapevine, many studies have been conducted on the effects of ambient levels of UVR, but there are few considering the effects of UV-B application on grape phenolic composition under commercial growing or postharvest conditions.