Terroir 2020 banner
IVES 9 IVES Conference Series 9 Terroir in Tasting: A sensory approach for marketing fine Australian wines of provenance as memorable experiences

Terroir in Tasting: A sensory approach for marketing fine Australian wines of provenance as memorable experiences

Abstract

Aims: Establishing an image of fine wine through the Geographical Indication (GI) system is of interest to the Australian wine sector. Beyond provenance, the sensory experience of fine wine is often linked to consumption with appropriate foods. For this purpose, studies were undertaken to understand consumer perceptions of what constitutes a fine wine, which sensory and chemical factors may define fine Australian Chardonnay and Shiraz wines from various regions, the sensory attributes driving appropriate food and wine pairings, and how these relate to consumer perceptions of provenance, the overall consumer experience and memorability. 

Methods and Results: An online survey was conducted with Australian wine consumers (n = 349) to generate a consumer driven definition of fine Australian wine (FAW) based on sensory attributes, grape variety, wine region, label information, and food pairing, and to assess how that definition differs as a function of consumer wine involvement. Overall, consumers valued provenance, and highly involved wine Enthusiasts appeared to utilise more information and had broader sensory vocabularies than Aspirant and No Frills consumers. Exploring the regional typicality of commercially available FAW, Chardonnay wines (2015 vintage) from Margaret River (n = 16) and Yarra Valley (n = 16); and Shiraz wines (2014 vintage) from Barossa Valley (n = 16) and McLaren Vale (n = 15), were selected for descriptive sensory analysis and underwent profiling of volatiles by gas chromatography-mass spectrometry. For both grape varieties, there was large variability in wine styles within the same GI, meaning winemaking intervention is important for regional/sub-regional typicality, which therefore cannot be determined solely on geographic origin of the fruit. Nonetheless, a combination of sensory markers and volatile profiles allowed the building of regional typicality models, although consumers may not perceive subtle sub-regional differences in sensory attributes. The food and wine pairing-related gastronomic experiences were explored under blind and informed (wine provenance) conditions. Based on descriptive analyses, specific food and wine pairings (n = 8) were selected for consumer tastings (n = 151), which explored the pre-consumption, core-consumption, and post-consumption experiences in relation to the sensory profiles of the pairings. During core-consumption, information level significantly impacted ratings for sensory complexity and a range of emotions. Appropriate pairings corresponded with increased liking, sensory complexity, and expected prices for wine, and evoked emotions of positive valence. In the post-consumption experience, information level affected the vividness of the tasting, whereas the most appropriate pairings commanded significant vividness, remembered liking, memorability, and loyalty ratings.

Conclusion: 

Although regional typicality can be modelled using volatile composition and sensory attributes, consumers may not perceive these differences in tasting. The results from this study of sensory profiles and preferred food pairings for FAW from several regions can help the wine production, marketing and hospitality sectors tailor their services and communications to incorporate fine wines in their region-specific marketing. Consequently, appropriate food and wine pairings may be an important marketing strategy to develop and promote provenance and positive gastronomic experiences, and using a Wine:Food strategy, rather than wine alone, could provide wine businesses with higher customer satisfaction and spending

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Marcell Kustos1*, David W. Jeffery1, Steven Goodman2, Hildegarde Heymann3, Susan E.P. Bastian1

1School of Agriculture, Food and Wine, The University of Adelaide (UA), Waite Research Institute, PMB 1, Glen Osmond, South Australia 5064 Australia
2Business School, The University of Adelaide, South Australia 5005 Australia
3Department of Viticulture and Enology, University of California at Davis, One Shields Avenue, Davis, CA 95616-5270, USA

Contact the author

Keywords

Wine attributes, sensory memory, food pairing, emotion measurement, wine marketing, wine business

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Monitoring of mannoprotein cessions during wine aging on lees: development of a simple enzymatic method

Mannoproteins are polysaccharides released by Saccharomyces cerevisiae yeast during alcoholic fermentation or by enzymatic action during aging on yeast lees (autolysis). These molecules play a major role in wine characteristics processing, namely, in the tartaric stabilization and protein haze prevention; moreover, they improve color stability and reduce astringency.

Chitosan elicits mono-glucosylated stilbene production and release in fed-batch fermentation of grape cells 

In the present study, the optimal conditions of grape (Vitis vinifera cv ‘Barbera’) cell cultures in batch and fed-batch bioreactor processes were studied to specifically improve the production of mono-glucosylated stilbenes.

Pests and biodiversity management on a climate change scenario: A practical case

The weather anomalies comparing the 1971-2000 time frame and the last years has showned a dramatic scenario when, in some months, average temperature in above 3ºC and the reduction in precipitation in more than 30%.

Anthocyanin profile is differentially affected by high temperature, elevated CO2 and water deficit in Tempranillo (Vitis vinifera L.) clones

Anthocyanin potential of grape berries is an important quality factor in wine production. Anthocyanin concentration and profile differ among varieties but it also depends on the environmental conditions, which are expected to be greatly modified by climate change in the future. These modifications may significantly modify the biochemical composition of berries at harvest, and thus wine typicity. Among the diverse approaches proposed to reduce the potential negative effects that climate change may have on grape quality, genetic diversity among clones can represent a source of potential candidates to select better adapted plant material for future climatic conditions. The effects of individual and combined factors associated to climate change (increase of temperature, rise of air CO2 concentration and water deficit) on the anthocyanin profile of different clones of Tempranillo that differ in the length of their reproductive cycle were studied. The aim was to highlight those clones more adapted to maintain specific Tempranillo typicity in the future. Fruit-bearing cuttings were grown in controlled conditions under two temperatures (ambient temperature versus ambient temperature + 4ºC), two CO2 levels (400 ppm versus 700 ppm) and two water regimes (well-watered versus water deficit), both in combination or independently, in order to simulate future climate change scenarios. Elevated temperature increased anthocyanin acylation, whereas elevated CO2 and water deficit favoured the accumulation of malvidin derivatives, as well as the acylation and tri-hydroxylation level of anthocyanins. Although the changes in anthocyanin profile observed followed a common pattern among clones, such impact of environmental conditions was especially noticeable in one of the most widely distributed Tempranillo clones, the accession RJ43.

Projected changes in vine phenology of two varieties with different thermal requirements cultivated in La Mancha DO (Spain) under climate change scenarios

The aim of this work was to analyze the phenology variability of Tempranillo and Chardonnay cultivars, related to the climatic characteristics in La Mancha Designation of Origin, and their potential changes under climate change scenarios. Phenological dates referred to budbreak, flowering, veraison and harvest were analyzed for the period 2000-2019. The weather conditions at daily time scale, recorded during the same period, were also evaluated. The thermal requirements to reach each of these phenological stages were calculated and expressed as the GDD accumulated from DOY=60. Changes in phenology were projected by 2050 and 2070 taking into account those values and the projected temperatures and precipitation, simulated under two Representative Concentration Pathway (RCP) scenarios –RCP4.5 and RCP8.5– using an ensemble of models. The average phenological dates during the period under study were, April 16th ± 6.6 days and April 5th ± 6.0 days for budbreak, May 31st ± 6.0 days and May 27th ± 5.3 days for flowering, July 26th ± 5.6 days and July 25th ± 5.8 days for veraison, and Ago 23rd ± 10.8 days and Ago 17th ± 9.0 days for harvest, respectively, for Tempranillo and Chardonnay. The projected changes in temperature imply an average change in the maximum growing season (April-August) temperatures of 1.2 and 1.9°C by 2050, and 1.6 and 2.6°C by 2070, under the RCP4.5 and RCP8.5 scenarios, respectively. A reduction in precipitation is predicted, which vary between 15% for 2050 under RCP4.5 scenario and up to 30% by 2070 under RCP8.5. The advance of the phenological dates for 2050, could be of 6, 7, 7, and 8 days for Tempranillo and 4, 6, 6 and 9 days for Chardonnay, respectively for budbreak, flowering, veraison and harvest under the RCP4.5 scenario. Under the RCP8.5 emission scenario, the advance could be up to 30% higher.