Terroir 2020 banner
IVES 9 IVES Conference Series 9 Have the best Bordeaux wines been drunk already? A reflection on the transient nature of terroir, using case study Australia

Have the best Bordeaux wines been drunk already? A reflection on the transient nature of terroir, using case study Australia

Abstract

Aim:  The aim of this paper is to demonstrate that the meaning of terroir should be regarded as transient. This is because climate, one of the principal components of terroir, is changing with time, and can no longer be assumed to be constant with fluctuations about a mean. This is due to the climate crisis.

Methods and Results: The paper reviewed a very recent climate modelling study of Australian grape growing regions (GI’s) especially for temperature. It included Mean Growing Season Temperatures (MSGT) for the present period (1997-2017) and two in the future, (2041-2061) and (2081-2100). The results were in line with several previous projections indicating warming and drying trends over the period. Present hot inland regions will be the most affected. Literature references indicated similar trends elsewhere in the world including traditional vineyard regions of Europe.

Conclusions: 

Results of the climate modelling for Australia and the rest of the world suggest the need for adaptive responses as the terroir changes. This will require changes to variety or of the region. The transition will be easier for presently cool regions than for presently hot ones, as more potential varieties are available. Some currently hot regions may become unsuitable for wine production. There is evidence that the optimum temperature conditions for present varieties in regions like Bordeaux have already been surpassed by climate change.

Significance and Impact of the Study: There is limited evidence to date that global wine firms recognise the scale of this problem and are planning to adapt. A good outcome would be that the world wine map might be redrawn, to feature some new regions and new varieties in existing regions. A bad outcome would be associated with failure to acknowledge or address the impending crisis.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type: Article

Authors

Richard Smart*

Smart Viticulture, Greenvale, Victoria, Australia

Contact the author

Keywords

Climate change, terroir, temperature

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Q-NMR measurements: quantitative analysis of wine composition applied to Bordeaux red wines authenticity control

Traceability of wine is today a consumer demand and a scientific challenge. The methods of analysis must be able to control three fundamental parameters: the geographical origin, the grape varieties, and the vintage.

Antioxidant activity of grape seed and skin extract during ripening

Reactive oxygen species (ROS) play an important physiological role in the body’s defense and being involved in numerous signaling pathways 1, 2. When the balance between oxidant and antioxidant species is altered in favor of ROS, oxidative stress is generated. In this condition the cells are damaged as the ROS oxidize important cellular components, such as proteins, lipids, nucleic acids and

StartupLab and HackaVitis: open innovation and technology transfer in the wine sector

The study analyzes a set of open innovation actions promoted by the innovation environments of the Instituto Federal do Rio Grande do Sul (IFRS), in cooperation with entities, companies in the sector and the Department of Innovation, Science and Technology of Rio Grande do Sul.

Mining microbiome data to identify antagonists of grapevine downy mildew (Plasmopara viticola)

Vineyards are home to a myriad of microorganisms that interact with each other and with the vines. Some microorganisms are plant pathogens, such as the oomycete Plasmopara viticola, causing grapevine downy mildew. Others have a positive effect on vine health, such as disease biocontrol agents. These beneficial plant-microbe and microbe-microbe interactions have gained more attention in recent years because they could represent an alternative to the use of fungicides in viticulture.

Spatial variability of temperature is linked to grape composition variability in the Saint-Emilion winegrowing area

Elevated temperature during the grape maturation period is a major threat for grape quality and thus wine quality. Therefore, characterizing the grape composition response to temperature at a larger scale would represent a crucial step towards adaptation to climate change. In response to changes in temperature, various physiological mechanisms regulate grape composition. Primary and secondary metabolisms are both involved in this response, with well-known effects, for example on anthocyanins, and lesser known effects, for example on aromas or aroma precursors. At the field scale or at the regional scale, however, numerous environmental or plant-specific factors intervene to make the effects of temperature difficult to distinguish from overall variability. In this study, it was attempted to overcome this difficulty by selecting well-characterized situations with differing temperatures.
A long-term study of air temperature variability across several Merlot vineyards in the Saint-Emilion and Pomerol wine producing area found significant temperature differences and gradients at various time scales linked to environmental factors. From this study area, a few sites were selected with similar age, soil and training system conditions, and with repeated and contrasted temperature differences during the maturation period. The average temperature difference during the maturation period was about 2°C between cooler and warmer sites, a difference similar to that expected under future climate change scenarios. In close vicinity to the temperature sensors at each site, grape berries were sampled at different times until full maturity during 2019 and 2020. Also, berries from bunches on either side of the row were analyzed separately, allowing an investigation of bunch exposure effect associated with the coupling of berry temperature and solar radiation. Four replicates of pooled berries for each time – site – bunch exposure combination were obtained and analyzed for biochemical composition. Analyses of variance of the biochemical composition data collected at different sampling times reveal significant effects associated with temperature, site, and bunch azimuth. For instance, anthocyanins in grape skins are clearly influenced by temperature and solar radiation exposure, with up to 30% reduction in warmer conditions.