Terroir 2020 banner
IVES 9 IVES Conference Series 9 Water dynamics of Touriga-Nacional grapevines trained in cordon and guyot systems under Mediterranean climate conditions

Water dynamics of Touriga-Nacional grapevines trained in cordon and guyot systems under Mediterranean climate conditions

Abstract

Aims: The aims of the present study were to (1) evaluate the water dynamics of Touriga-Nacional grapevines trained to spur pruned cordon and Guyot systems and (2) assess the effect of variable water availability in a commercial vineyard located in the Demarcated Douro Region (DDR), Portugal.

Methods and Results: The study was carried out in a commercial vineyard, located in the Upper Douro sub-region (the eastern sub-region with harsher climatic conditions) of the DDR. The climate of this area is typically Mediterranean and the soil of schist origin. Touriga-Nacional grapevines grafted onto 110 Richter rootstocks trained to spur pruned cordon and Guyot systems were selected. Sap flow and trunk diameter measurements were performed during the growing season. Complementarily, soil moisture, leaf water potential and leaf area index measurements were made. The results showed daily trunk diameter fluctuations (TDFs), with the contraction, recovery and increment phases and higher sap flow (SF) rates at earlier stage. Under harsh pedoclimatic conditions, SF was reduced and TDF flattened. Rehydration and stomatal mechanisms were mostly associated with these responses. Furthermore, Guyot-trained vines showed higher changes in TDF for the same SF values, where TDF of spur pruned cordon-vines remained practically unchanged over maturation. These results pointed to the effect of the shorter length of the hydraulic pathways of the Guyot-trained vines, in comparison with the cordon-trained vines.

Conclusions:

The study exposed the daily and seasonal water dynamics and crop performance of mature vines over the growing season, highlighting the adaptive potential of the Guyot training system to the DDR. The use of plant-based measurement sensors (sap flow and trunk diameter sensors) revealed sensitivity to irrigation (and precipitation) events and conditions of significant atmospheric evaporative demand.

Significance and Impact of the Study: Adaptation strategies to climate variability and climate change must be adopted to maintain grapevine yield and quality in order to guarantee economic and environmental sustainability. The adequate selection of the grapevine training system and improved water-use efficiency stand out as one of the most critical for the present and future times

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Aureliano C. Malheiro1,*, Mafalda Pires1, Nuno Conceição2, Ana M. Claro1, Lia-Tânia Dinis1, José Moutinho-Pereira1

1Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal 
2Linking Landscape, Environment, Agriculture and Food (LEAF), University of Lisbon, Portugal

Contact the author

Keywords

Douro Demarcated Region, sap flow, training system, trunk diameter variation, Vitis vinifera

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Novel approaches and promising perspectives for enhancing grapevine editing and regeneration

Grapevine (Vitis vinifera L.) is a challenging plant species to transform and regenerate due to its complex genome and biological characteristics. This limits the development of cisgenic and gene-edited varieties. One hurdle is selecting the best starting tissue for the transformation process, much like isolating suitable tissue for protoplasts. One promising method involves delivering CRISPR/Cas components to protoplasts isolated from embryogenic calli, which are then induced to regenerate. However, this process is inefficient, time-consuming, and only applicable to a few genotypes. To enhance grapevine regeneration efficiency, the expression of developmental and plant growth regulators shows promise in escaping the recalcitrance encountered in traditional tissue culture methods.

WINE LEES AS A SOURCE OF NITROGEN FOR OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION PERFORMANCE

Malolactic fermentation (MLF) is a desired process in red and acidic white wines, after alcoholic fermentation (AF), carried out by the lactic acid bacterium (LAB) Oenococcus oeni. The advantages are an increase of pH, microbiological stabilization and organoleptic improvement of the final wine. However, the presence of stress factors such as ethanol, low pH, high total SO2, lack of nutrients and presence of inhibitors, could affect the successful completion of MLF [1]. Changes in amino acid composition and deficiencies in peptides after AF, showed that MLF can be delayed, signaling its importance for bacterial growth and L-malic acid degradation during MLF [2].

Monitoring arthropods diversity in the “Costières de Nîmes” viticulture landscape

Biodiversity loss in agrosystems is partly due to landscape simplification (field enlargement, hedgerows removal…) that led to a loss of heterogeneity of the overall landscape.

New methods and technologies to describe the environment in terroir studies

The concept of terroir in viticulture deals with the influence of environmental factors on vine behaviour and grape ripening. Recent advances in technology, in particular computer technology, allow a more in-depth study of the environment. Geomorphology can be studied with digital Elevation Models (DEM). Soils can be surveyed with geophysics.

Les motivations du vigneron en quête de l’expression “terroir”

During the 1985 harvest, I was able to notice in the taste perception a break in the harmony of the wine during even partial blends of grapes from different plots. At the same time, I noted a good reaction from customers for greater product customization. As a result, I was led to seek the objective limits of the terroir of a cuvée and by a constant and permanent refinement of the parameters specific to each of the terroirs.