Terroir 2020 banner
IVES 9 IVES Conference Series 9 Water dynamics of Touriga-Nacional grapevines trained in cordon and guyot systems under Mediterranean climate conditions

Water dynamics of Touriga-Nacional grapevines trained in cordon and guyot systems under Mediterranean climate conditions

Abstract

Aims: The aims of the present study were to (1) evaluate the water dynamics of Touriga-Nacional grapevines trained to spur pruned cordon and Guyot systems and (2) assess the effect of variable water availability in a commercial vineyard located in the Demarcated Douro Region (DDR), Portugal.

Methods and Results: The study was carried out in a commercial vineyard, located in the Upper Douro sub-region (the eastern sub-region with harsher climatic conditions) of the DDR. The climate of this area is typically Mediterranean and the soil of schist origin. Touriga-Nacional grapevines grafted onto 110 Richter rootstocks trained to spur pruned cordon and Guyot systems were selected. Sap flow and trunk diameter measurements were performed during the growing season. Complementarily, soil moisture, leaf water potential and leaf area index measurements were made. The results showed daily trunk diameter fluctuations (TDFs), with the contraction, recovery and increment phases and higher sap flow (SF) rates at earlier stage. Under harsh pedoclimatic conditions, SF was reduced and TDF flattened. Rehydration and stomatal mechanisms were mostly associated with these responses. Furthermore, Guyot-trained vines showed higher changes in TDF for the same SF values, where TDF of spur pruned cordon-vines remained practically unchanged over maturation. These results pointed to the effect of the shorter length of the hydraulic pathways of the Guyot-trained vines, in comparison with the cordon-trained vines.

Conclusions:

The study exposed the daily and seasonal water dynamics and crop performance of mature vines over the growing season, highlighting the adaptive potential of the Guyot training system to the DDR. The use of plant-based measurement sensors (sap flow and trunk diameter sensors) revealed sensitivity to irrigation (and precipitation) events and conditions of significant atmospheric evaporative demand.

Significance and Impact of the Study: Adaptation strategies to climate variability and climate change must be adopted to maintain grapevine yield and quality in order to guarantee economic and environmental sustainability. The adequate selection of the grapevine training system and improved water-use efficiency stand out as one of the most critical for the present and future times

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Aureliano C. Malheiro1,*, Mafalda Pires1, Nuno Conceição2, Ana M. Claro1, Lia-Tânia Dinis1, José Moutinho-Pereira1

1Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal 
2Linking Landscape, Environment, Agriculture and Food (LEAF), University of Lisbon, Portugal

Contact the author

Keywords

Douro Demarcated Region, sap flow, training system, trunk diameter variation, Vitis vinifera

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

WINE RACKING IN THE WINERY AND THE USE OF INERT GASES: CONTROL AND OPTIMIZATION OF THE PROCESS

Atmospheric oxygen (O₂) generates oxidation in wines that affect their physicochemical and sensory evolution. The O₂ uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O₂ uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The aim was to study the uptake of O₂ during the racking of a model wine as a reference and to compare with purging the destination tank with different inert gases.

Chemical and sensory influences of the UV-C light of 254 nm in combination with the antioxidant substances in wine

The UV-C light enhances oxidative processes in wine. Increasing the dose of UV-C can lead to olfactoric, gustatoric and colour changes in wine. These changes are triggered by a series of photochemical reactions such as degradation of esters, the formation of odour-active substances such as 2 aminoacetophenone through the photooxidation of amino acids. Ultimately, these reactions can lead to a reduced wine quality.

Acceptance of fungus-resistant grape varieties from the perspective of producers and consumers in Germany

Fungus-resistant grape varieties (frgv) are an important field of research in viticulture, as they represent a way of reducing the use of copper-containing pesticides and thus minimising the environmental impact. The literature suggests that resistant grape varieties are a promising solution to the problem of using copper-containing pesticides in viticulture and that their quality has improved in recent years. However, there are still challenges in the acceptance and dissemination of FRGV by wine producers and consumers.

Influence of climatic conditions on grape composition of Tempranillo in La Mancha DO (Spain)

The aim of this work was to analyze the variability in grape composition of the Tempranillo cultivar related to climatic conditions, in La Mancha Designation of Origin. Grape composition (sugar content, total acidity, pH, malic acid, and total and extractable anthocyanins) recorded during ripening, were analysed for the period 2000-2019. The weather conditions at daily time scale, recorded during the same period, were also evaluated. The relationships between grape parameters with climatic variables related to temperature and to water deficits, referring different periods between phenological events along the growing cycle, were evaluated using regression analysis. High variability in grape composition was observed in the period analysed. Total acidity varied between 3.7 and 7.3 gL-1 while malic acid varied between 1.2 and 4 gL-1. The extractable anthocyanins ranged between 526 and 972 mgL-1, and total anthocyanins ranged between 922 and 1388 mgL-1, being the lowest values recorded in the hottest year (2017). Total acidity decreased 0.77 gL-1 for an increase of 100 GDD, while malic acid decrease in 0.42 gL-1 for the same GDD increase, being the period between veraison and harvest the one that seemed to have higher influence on acidity. In addition, it was confirmed that increasing water deficits decreased acidity. Total and extractable anthocyanins increased in about 210 and 105 mgL-1, respectively, with an increase of 100 GDD from veraison to harvest, and the increase in water deficits favour the increase of anthocyanins, both total and extractable anthocyanins. Total and extractable anthocyanins concentration increased in 35 and 22 mgL-1 per an increase of 10 mm in the water deficit. These results can be of interest to understand the potential changes that grapes composition may suffer under future warmer climates.

Haplotype-resolved genome assemblies of Chasselas and Ugni Blanc

Haplotype-resolved genome assemblies were produced for Chasselas and Ugni Blanc, two heterozygous real-field genetic pool Vitis vinifera cultivars by combining high-fidelity long-read sequencing (HiFi) and high‐throughput chromosome conformation capture (Hi-C). The telomere-to-telomere full coverage of the chromosomes allowed us to assemble separately the two haplo-genomes of both cultivars and revealed structural variations between the two haplotypes of a given cultivar.