Terroir 2020 banner
IVES 9 IVES Conference Series 9 Water dynamics of Touriga-Nacional grapevines trained in cordon and guyot systems under Mediterranean climate conditions

Water dynamics of Touriga-Nacional grapevines trained in cordon and guyot systems under Mediterranean climate conditions

Abstract

Aims: The aims of the present study were to (1) evaluate the water dynamics of Touriga-Nacional grapevines trained to spur pruned cordon and Guyot systems and (2) assess the effect of variable water availability in a commercial vineyard located in the Demarcated Douro Region (DDR), Portugal.

Methods and Results: The study was carried out in a commercial vineyard, located in the Upper Douro sub-region (the eastern sub-region with harsher climatic conditions) of the DDR. The climate of this area is typically Mediterranean and the soil of schist origin. Touriga-Nacional grapevines grafted onto 110 Richter rootstocks trained to spur pruned cordon and Guyot systems were selected. Sap flow and trunk diameter measurements were performed during the growing season. Complementarily, soil moisture, leaf water potential and leaf area index measurements were made. The results showed daily trunk diameter fluctuations (TDFs), with the contraction, recovery and increment phases and higher sap flow (SF) rates at earlier stage. Under harsh pedoclimatic conditions, SF was reduced and TDF flattened. Rehydration and stomatal mechanisms were mostly associated with these responses. Furthermore, Guyot-trained vines showed higher changes in TDF for the same SF values, where TDF of spur pruned cordon-vines remained practically unchanged over maturation. These results pointed to the effect of the shorter length of the hydraulic pathways of the Guyot-trained vines, in comparison with the cordon-trained vines.

Conclusions:

The study exposed the daily and seasonal water dynamics and crop performance of mature vines over the growing season, highlighting the adaptive potential of the Guyot training system to the DDR. The use of plant-based measurement sensors (sap flow and trunk diameter sensors) revealed sensitivity to irrigation (and precipitation) events and conditions of significant atmospheric evaporative demand.

Significance and Impact of the Study: Adaptation strategies to climate variability and climate change must be adopted to maintain grapevine yield and quality in order to guarantee economic and environmental sustainability. The adequate selection of the grapevine training system and improved water-use efficiency stand out as one of the most critical for the present and future times

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Aureliano C. Malheiro1,*, Mafalda Pires1, Nuno Conceição2, Ana M. Claro1, Lia-Tânia Dinis1, José Moutinho-Pereira1

1Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal 
2Linking Landscape, Environment, Agriculture and Food (LEAF), University of Lisbon, Portugal

Contact the author

Keywords

Douro Demarcated Region, sap flow, training system, trunk diameter variation, Vitis vinifera

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

High resolution climatic zoning of the Portuguese viticultural regions

Viticulture and winemaking represent a key sector for the Portuguese economy. As grapevines are strongly governed by atmospheric factors, climate change may impose a major threat to this crop. In this study, the current-past (1950-2000) and future (2041-2070) climatic conditions in Portugal are analyzed using a number of bioclimatic indices, including a new categorized index (CatI).

Classification and prediction of tannin botanical origin through voltammetry and machine learning approach

The classification of enological tannins has gained importance following the OIV’s requirement to include their botanical origin on product labels (OIV-OENO 624-2022).

Brettanomyces bruxellensis, born to live

The wine spoilage yeast Brettanomyces bruxellensis can be found at several steps in the winemaking process due to its resistance to multiple stress conditions. Among the resistance strategies, one could be the formation of biofilm, a lifestyle known to enhance persistence of microorganisms. In this study, we propose to characterize biofilm of B. bruxellensis in wine, especially through several microscopic analyses.

Vineyards and clay minerals: multi-technique analytical approach and correlations with soil properties

Purpose of this research is to quantitatively assess the mineral component of vineyard soils, with particular attention to the mineralogical analysis of clays, which represent an element of high importance in the vineyard culture as well as in general agriculture. An X-ray diffraction (XRD) / thermogravimetric (TG) multi-technique analytical approach was developed, tested on soil samples taken from vineyards around the world. This codified analytical procedure was necessary to obtain precise qualitative and quantitative mineralogical data, globally comparable to distinguish the geopedological identity of the vineyards. Soil samples from vineyards of various locations were analysed, in very different geological conditions. The bulk-rock quantitative phase analysis (QPA) was obtained by the Rietveld method while the detailed composition of the clay-sized fraction was determined by modelling of the oriented X-ray diffraction patterns. The research provided a precise classification of the mineral component of soils, distinguishing the mineral phases of the clays and the so-called mixed-layer clay minerals. We found that the content in mixed layers can be directly correlated with the water retention and the cation exchange capacity ​​of the soil, while the presence of other clayey minerals and phyllosilicates in this research did not affect this CEC parameter, which codes the fertility level of the soils. The study demonstrates that terroir, in particular soils formed in complex or very different geological conditions, can only be effectively interpreted by properly analysing its mineral phases, in particular the mixed-layer clay component. These are characteristic abiotic ecological indicators, which may have specific eco-physiological influences on the plant.

Elucidating contributions by vineyard site on volatile aroma characteristics of pinot noir wines

Correlations between vineyard site and wine have, historically, been limited due to lack of uniformity in scion and rootstock clone and lack of controlled pilot-scale winemaking conditions, particularly temperature