Terroir 2020 banner
IVES 9 IVES Conference Series 9 Characterization of the thiol aromatic potential of a new resistant grape variety: Floreal

Characterization of the thiol aromatic potential of a new resistant grape variety: Floreal

Abstract

Aims: Due to climate change and the desire to decrease enological inputs (organic farming), the vineyard has to be modified and the selection of new resistant grape varieties as an alternative is researched intensively today. From January 2018, four new grape varieties that are resistant against mildew and odium have been added to the official catalogue and are now available for planting new vineyards in France: Floreal, Artaban, Vidoc and Voltis. Floreal wines have been described as “very aromatic and very intense with specific notes of grapefruit” during tasting. Unfortunately, there is no data, either qualitative or quantitative, in literature to describe the aromatic quality of this resistant grape variety.

Today we know that the olfactory descriptor of grapefruit is mainly characteristic of 3-mercaptohexan-1-ol (3MH). To reach a deeper understanding of the aromatic potential of Floreal grapes, a combined study of the effects of both viticultural (nitrogen foliar spraying) and enological (cold lees settling) parameters has been carried out.

Methods and Results: After pressing Floreal grapes, corresponding must (with or without cold settling) was inoculated with a high b-lyase activity dry yeast strain at 20 g/hL. Temperature of fermentation was maintained close to 16 °C and we monitored the kinetic of alcoholic fermentation by measuring the rate of CO2 release. Following this, several parameters were quantified: cysteinylated and glutathionylated thiol precursors (during grape maturation and in the must), and 3MH (in the final wine) by SIDA-UPLC-MS/MS. An innovative analysis of both reduced and oxidized forms of 3MH and 3MHA has been also performed in order to indicate possible “wine oxidizability” of such a resistant variety. 

Conclusion: 

First of all, Floreal wines have concentrations in 3MH and 3MHA close to 1300 ng/L (sum of both compounds) which is relatively low in comparison with Colombard or Sauvignon blanc from Gers or Loire Valley, respectively. Thus, Floreal wine aromaticity cannot be only explained by 3MH and 3MHA, and other powerful thiols may be implicated such as 4MMP, opening an avenue for identification of new aroma compounds. 

A surprising and interesting result was the fact that cold lees settling did not significantly improve the level of both 3MH and 3MHA in Floreal wines, whereas this technological practice is commonly used for its positive effect in non-resistant varieties such as Sauvignon blanc. 

Significance and Impact of the Study: Therefore, accurate characterization of this new grape variety and those that will be developed in the coming years represents a great challenge: adapting viticultural and enological practices to produce high quality wines in the future. 

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Gabriel Dournes1, Erick Casalta1, Alain Samson2, Evelyne Aguera2, Jean-Roch Mouret1, Aurélie Roland1*

1UMR SPO, INRAE, Univ Montpellier, Montpellier SupAgro, 2 place Pierre Viala, 34060 Montpellier Cedex 2, France
2 UE Pech Rouge, INRAE, 11430 Gruissan, France

Contact the author

Keywords

Thiol precursors, 3-mercaptohexan-1-ol, nitrogen foliar spraying, cold settling 

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Gamma-ray spectrometry In Burgundy vineyard for high resolution soil mapping

Aim: A soil mapping methodology based on gamma-ray spectrometry and soil sampling has been applied for the first time in Burgundy. The purpose of this innovative high-resolution mapping is to delimit soil areas, to define elementary units of soil for terroir characterization and vineyard management. The added value of this integrated approach is a continuous geophysical mapping of the soil with an investigation depth of 60cm.

Streamlining rootstock selection: new indices for efficiency and stability in viticulture

Grapevine rootstocks play a pivotal role in influencing scion vigor, yield, and fruit quality, making their selection critical for sustainable vineyard management.

Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Vine cane extracts are a valuable byproduct due to their rich content of polyphenols, vitamins, and other beneficial compounds, which can affect and benefit the vine and the grapes. This study aims to evaluate the response of grapevine plants to irrigation with water supplemented with a vine cane extract, both at physiology response and phenolic composition in different parts of the plant (root, trunk, shoot, leaf, and berry).
Cane extract was obtained by macerating crushed pruning residues with warm water (5:1) and pectolytic enzymes. Two-year-old potted plants were irrigated with water (Control) while others were irrigated with cane extracts, either at 1:4 (w/v, cane extract/water; T 1:4) or at 1:8 (w/v, cane extract/water; T 1:8).

Contribution of Electrical Resistivity Tomography (ERT) measurements for characterizing hydrological behaviour of an experimental plot in relation to pedo-geological factors (AOC Gaillac, SW France)

Electrical Resistivity Tomography (ERT) measurements have been performed by the Wenner method on an experimental plot situated in Gaillac region.

The characterization of Vitis vinifera L cv. Cabernet sauvignon: the contribution of Ecklonia maxima seaweed extract

Biostimulants and biofertilizers are considered environmentally friendly and cost-effective alternatives to synthetic fertilizers, plant growth regulators and crop improvement products. Broadly, plant biostimulants are expected to improve nutrient use efficiency, tolerance to abiotic stress, quality traits and availability of nutrients in the soil or rhizosphere. Currently, seaweed extracts account for more than 33% of the total plant biostimulant market. Within this category, Ascophyllum nodosum (AN), is the most widely studied and applied in biostimulant formulations.