Terroir 2020 banner
IVES 9 IVES Conference Series 9 Characterization of the thiol aromatic potential of a new resistant grape variety: Floreal

Characterization of the thiol aromatic potential of a new resistant grape variety: Floreal

Abstract

Aims: Due to climate change and the desire to decrease enological inputs (organic farming), the vineyard has to be modified and the selection of new resistant grape varieties as an alternative is researched intensively today. From January 2018, four new grape varieties that are resistant against mildew and odium have been added to the official catalogue and are now available for planting new vineyards in France: Floreal, Artaban, Vidoc and Voltis. Floreal wines have been described as “very aromatic and very intense with specific notes of grapefruit” during tasting. Unfortunately, there is no data, either qualitative or quantitative, in literature to describe the aromatic quality of this resistant grape variety.

Today we know that the olfactory descriptor of grapefruit is mainly characteristic of 3-mercaptohexan-1-ol (3MH). To reach a deeper understanding of the aromatic potential of Floreal grapes, a combined study of the effects of both viticultural (nitrogen foliar spraying) and enological (cold lees settling) parameters has been carried out.

Methods and Results: After pressing Floreal grapes, corresponding must (with or without cold settling) was inoculated with a high b-lyase activity dry yeast strain at 20 g/hL. Temperature of fermentation was maintained close to 16 °C and we monitored the kinetic of alcoholic fermentation by measuring the rate of CO2 release. Following this, several parameters were quantified: cysteinylated and glutathionylated thiol precursors (during grape maturation and in the must), and 3MH (in the final wine) by SIDA-UPLC-MS/MS. An innovative analysis of both reduced and oxidized forms of 3MH and 3MHA has been also performed in order to indicate possible “wine oxidizability” of such a resistant variety. 

Conclusion: 

First of all, Floreal wines have concentrations in 3MH and 3MHA close to 1300 ng/L (sum of both compounds) which is relatively low in comparison with Colombard or Sauvignon blanc from Gers or Loire Valley, respectively. Thus, Floreal wine aromaticity cannot be only explained by 3MH and 3MHA, and other powerful thiols may be implicated such as 4MMP, opening an avenue for identification of new aroma compounds. 

A surprising and interesting result was the fact that cold lees settling did not significantly improve the level of both 3MH and 3MHA in Floreal wines, whereas this technological practice is commonly used for its positive effect in non-resistant varieties such as Sauvignon blanc. 

Significance and Impact of the Study: Therefore, accurate characterization of this new grape variety and those that will be developed in the coming years represents a great challenge: adapting viticultural and enological practices to produce high quality wines in the future. 

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Gabriel Dournes1, Erick Casalta1, Alain Samson2, Evelyne Aguera2, Jean-Roch Mouret1, Aurélie Roland1*

1UMR SPO, INRAE, Univ Montpellier, Montpellier SupAgro, 2 place Pierre Viala, 34060 Montpellier Cedex 2, France
2 UE Pech Rouge, INRAE, 11430 Gruissan, France

Contact the author

Keywords

Thiol precursors, 3-mercaptohexan-1-ol, nitrogen foliar spraying, cold settling 

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Impact of grapevine rootstock genotypes on nitrogen status of the scion and phenolic composition in Pinot noir berries and wine

Context and purpose of the study. Nitrogen (N) limitation enhances the production of phenolic compounds in grapes due to the downregulation of the flavonoid biosynthesis pathway.

Using δ13C and hydroscapes as a tool for discriminating cultivar specific drought response

Measurement of carbon isotope discrimination in berry juice sugars at maturity (δ13C) provides an integrated assessment of water use efficiency (WUE) during the period of berry ripening, and when collected over multiple seasons can be used as an indication of drought stress response. Berry juice δ13C measurements were carried out on 48 different varieties planted in a common garden experiment in Bordeaux, France from 2014 through 2021 and were paired with midday and predawn leaf water potential measurements on the same vines in a subset of six varieties. The aim was to discriminate a large panel of varieties based on their stomatal behaviour and potentially identify hydraulic traits characterizing drought tolerance by comparing δ13C and hydroscapes (the visualisation of plant stomatal behaviour as a response to predawn water potential). Cluster analysis found that δ13C values are likely affected by the differing phenology of each variety, resulting in berry ripening of different varieties taking place under different stress conditions within the same year. We accounted for these phenological differences and found that cluster analysis based on specific δ13C metrics created a classification of varieties that corresponds well to our current empirical understanding of their relative drought tolerances. In addition, we analysed the water potential regulation of the subset of six varieties (using the hydroscape approach) and found that it was well correlated with some δ13C metrics. Surprisingly, a variety’s water potential regulation (specifically its minimum critical leaf water potential under water deficit) was strongly correlated to δ13C values under well-watered conditions, suggesting that base WUE may have a stronger impact on drought tolerance than WUE under water deficit. These results give strong insights on the innate WUE of a very large panel of varieties and suggest that studies of drought tolerance should include traits expressed under non-limiting conditions.

Characterization of winegrape berries’ composition on sorting tables using hyperspectral imaging and AI

Comprehensive evaluation of grape composition at winery receiving areas often requires multiple measurements to ensure representativeness, as well as the use of analytical techniques that are time-consuming and involve sample preparation.

Classification and prediction of tannin botanical origin through voltammetry and machine learning approach

The classification of enological tannins has gained importance following the OIV’s requirement to include their botanical origin on product labels (OIV-OENO624-2022).

Yeast derivatives: a promising alternative in wine oxidation prevention?

Oxidation processes constitute a main problem in winemaking. Oxidation result in color browning and varietal aroma loss, which are key attributes of wine organoleptic quality