Terroir 2020 banner
IVES 9 IVES Conference Series 9 Characterization of the thiol aromatic potential of a new resistant grape variety: Floreal

Characterization of the thiol aromatic potential of a new resistant grape variety: Floreal

Abstract

Aims: Due to climate change and the desire to decrease enological inputs (organic farming), the vineyard has to be modified and the selection of new resistant grape varieties as an alternative is researched intensively today. From January 2018, four new grape varieties that are resistant against mildew and odium have been added to the official catalogue and are now available for planting new vineyards in France: Floreal, Artaban, Vidoc and Voltis. Floreal wines have been described as “very aromatic and very intense with specific notes of grapefruit” during tasting. Unfortunately, there is no data, either qualitative or quantitative, in literature to describe the aromatic quality of this resistant grape variety.

Today we know that the olfactory descriptor of grapefruit is mainly characteristic of 3-mercaptohexan-1-ol (3MH). To reach a deeper understanding of the aromatic potential of Floreal grapes, a combined study of the effects of both viticultural (nitrogen foliar spraying) and enological (cold lees settling) parameters has been carried out.

Methods and Results: After pressing Floreal grapes, corresponding must (with or without cold settling) was inoculated with a high b-lyase activity dry yeast strain at 20 g/hL. Temperature of fermentation was maintained close to 16 °C and we monitored the kinetic of alcoholic fermentation by measuring the rate of CO2 release. Following this, several parameters were quantified: cysteinylated and glutathionylated thiol precursors (during grape maturation and in the must), and 3MH (in the final wine) by SIDA-UPLC-MS/MS. An innovative analysis of both reduced and oxidized forms of 3MH and 3MHA has been also performed in order to indicate possible “wine oxidizability” of such a resistant variety. 

Conclusion: 

First of all, Floreal wines have concentrations in 3MH and 3MHA close to 1300 ng/L (sum of both compounds) which is relatively low in comparison with Colombard or Sauvignon blanc from Gers or Loire Valley, respectively. Thus, Floreal wine aromaticity cannot be only explained by 3MH and 3MHA, and other powerful thiols may be implicated such as 4MMP, opening an avenue for identification of new aroma compounds. 

A surprising and interesting result was the fact that cold lees settling did not significantly improve the level of both 3MH and 3MHA in Floreal wines, whereas this technological practice is commonly used for its positive effect in non-resistant varieties such as Sauvignon blanc. 

Significance and Impact of the Study: Therefore, accurate characterization of this new grape variety and those that will be developed in the coming years represents a great challenge: adapting viticultural and enological practices to produce high quality wines in the future. 

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Gabriel Dournes1, Erick Casalta1, Alain Samson2, Evelyne Aguera2, Jean-Roch Mouret1, Aurélie Roland1*

1UMR SPO, INRAE, Univ Montpellier, Montpellier SupAgro, 2 place Pierre Viala, 34060 Montpellier Cedex 2, France
2 UE Pech Rouge, INRAE, 11430 Gruissan, France

Contact the author

Keywords

Thiol precursors, 3-mercaptohexan-1-ol, nitrogen foliar spraying, cold settling 

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Sustainable wine industry challenge: optimised cork powder us new sustainable fining agent to remove negative volatile phenols

AIM: Cork, the bark of Quercus suber L. is a natural, renewable, sustainable, and biodegradable raw material, representing an abundant and cheap source of raw material. Portugal is the major cork producer (185,000 tons) processing about three-quarters of the world’s cork, generating up to 25 wt % of cork dust as a by-product.

UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

In a climate change context and aiming for sustainable, high-quality Bordeaux wine production, this project examines the impact of grape maturity levels in various cultivars chosen for their adaptability, genetic diversity, and potential to enhance wine quality. The study explores the effects on wine compo-sition and quality through sensory and molecular methods. We studied eight 14-year-old Vitis vinifera cv. grape varieties from the same area (VITADAPT plots 1 and 5): Cabernet Franc, Cabernet Sauvignon, Carmenère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional.

Model ageing effects on the formation and evolution of minty terpenoids in red wine

A pool of terpenoids possibly implicated in minty odours and in the appreciable refreshing sensation, has been identified in the ageing bouquet of red Bordeaux wines

CHARACTERIZATION OF ENOLOGICAL OAK TANNIN EXTRACTS BY MULTI-ANALYTICAL METHODS APPROACH

Oak tannin extracts are commonly used to improve wine properties. The main polyphenols found in oak wood extracts are ellagitannins¹ that release ellagic acid upon hydrolysis and comprise numerous structures². Moreover, oak tannin extracts contain other compounds giving a complex mixture. Consequently, the official OIV method based on gravimetric analysis of the tannin fraction adsorbed on polyvinylpolypyrrolidone is not sufficient to describe their composition and highlight their chemical diversity.

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.