Terroir 2020 banner
IVES 9 IVES Conference Series 9 Characterization of the thiol aromatic potential of a new resistant grape variety: Floreal

Characterization of the thiol aromatic potential of a new resistant grape variety: Floreal

Abstract

Aims: Due to climate change and the desire to decrease enological inputs (organic farming), the vineyard has to be modified and the selection of new resistant grape varieties as an alternative is researched intensively today. From January 2018, four new grape varieties that are resistant against mildew and odium have been added to the official catalogue and are now available for planting new vineyards in France: Floreal, Artaban, Vidoc and Voltis. Floreal wines have been described as “very aromatic and very intense with specific notes of grapefruit” during tasting. Unfortunately, there is no data, either qualitative or quantitative, in literature to describe the aromatic quality of this resistant grape variety.

Today we know that the olfactory descriptor of grapefruit is mainly characteristic of 3-mercaptohexan-1-ol (3MH). To reach a deeper understanding of the aromatic potential of Floreal grapes, a combined study of the effects of both viticultural (nitrogen foliar spraying) and enological (cold lees settling) parameters has been carried out.

Methods and Results: After pressing Floreal grapes, corresponding must (with or without cold settling) was inoculated with a high b-lyase activity dry yeast strain at 20 g/hL. Temperature of fermentation was maintained close to 16 °C and we monitored the kinetic of alcoholic fermentation by measuring the rate of CO2 release. Following this, several parameters were quantified: cysteinylated and glutathionylated thiol precursors (during grape maturation and in the must), and 3MH (in the final wine) by SIDA-UPLC-MS/MS. An innovative analysis of both reduced and oxidized forms of 3MH and 3MHA has been also performed in order to indicate possible “wine oxidizability” of such a resistant variety. 

Conclusion: 

First of all, Floreal wines have concentrations in 3MH and 3MHA close to 1300 ng/L (sum of both compounds) which is relatively low in comparison with Colombard or Sauvignon blanc from Gers or Loire Valley, respectively. Thus, Floreal wine aromaticity cannot be only explained by 3MH and 3MHA, and other powerful thiols may be implicated such as 4MMP, opening an avenue for identification of new aroma compounds. 

A surprising and interesting result was the fact that cold lees settling did not significantly improve the level of both 3MH and 3MHA in Floreal wines, whereas this technological practice is commonly used for its positive effect in non-resistant varieties such as Sauvignon blanc. 

Significance and Impact of the Study: Therefore, accurate characterization of this new grape variety and those that will be developed in the coming years represents a great challenge: adapting viticultural and enological practices to produce high quality wines in the future. 

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Gabriel Dournes1, Erick Casalta1, Alain Samson2, Evelyne Aguera2, Jean-Roch Mouret1, Aurélie Roland1*

1UMR SPO, INRAE, Univ Montpellier, Montpellier SupAgro, 2 place Pierre Viala, 34060 Montpellier Cedex 2, France
2 UE Pech Rouge, INRAE, 11430 Gruissan, France

Contact the author

Keywords

Thiol precursors, 3-mercaptohexan-1-ol, nitrogen foliar spraying, cold settling 

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Metabolic fingerprinting and qualitative attributes of two indigenous Cypriot cultivars destined for the production of ‘commandaria’: the impact of leaf removal and dehydration process

Grapes’ sun-drying is one of the most critical steps in the production of ‘Commandaria’, a dessert wine with Protected Designation of Origin that is exclusively produced in Cyprus from grapes of the two indigenous cultivars (Vitis vinifera L.), namely ‘Mavro’ and ‘Xynisteri’. Despite its significant economic importance, no data regarding the primary and secondary metabolites of the aforementioned cultivars exist.

Embracing innovation for a future-ready wine industry: insights from Moldova’s AI-powered pilot project

In 2023–2024, the Republic of Moldova launched its first AI-powered wine pilot, integrating artificial intelligence into the vitivinicultural value chain.

Can early defoliation improve fruit composition of Tempranillo grapevines in the semi-arid terroir of Utiel-Requena, Spain?

Early defoliation has been found a useful tool to reduce cluster compactness and to improve fruit composition in vigorous sites of different viticultural areas. Our objective was to test the usefulness

Reaction Mechanisms of Copper and Iron with Hydrogen Sulfide and Thiols in Model Wine

Fermentation derived sulfidic off-odors due to hydrogen sulfide (H2S) and low molecular weight thiols are commonly encountered in wine production and removed by Cu(II) fining. However, the mechanism underlying Cu(II) fining remains poorly understood, and generally results in increased Cu concentration that lead to deleterious reactions in finished wine. The present study describes a mechanistic investigation of the iron and copper mediated reaction of H2S, cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol with oxygen. The concentrations of H2S, thiols, oxygen, and acetaldehyde were monitored over time. It was found that Cu(II) was rapidly reduced by both H2S and thiols to Cu(I).

Effect of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on rose quality wine

Alcoholic fermentation using no Saccharomyces wine is an effective means of modulating wine aroma. This study investigated the impact of coinoculating Torulaspora delbruecki with two Saccharomyces cerevisiae commercial yeast (QA23, Lallemand; Red Fruit, Sepsa-Enartis) on enological quality parameters, volatile composition and sensory analysis. The following assays were performed on Tempranillo variety: Saccharomyces QA23 (CTQA), Saccharomyces Red Fruit (CTRF), coinoculated T. delbrueckii + S.cerevisiae QA23 (CIQA) and coinoculated T. delbrueckii + S.cerevisiae (CIRF).