Terroir 2020 banner
IVES 9 IVES Conference Series 9 Characterization of the thiol aromatic potential of a new resistant grape variety: Floreal

Characterization of the thiol aromatic potential of a new resistant grape variety: Floreal

Abstract

Aims: Due to climate change and the desire to decrease enological inputs (organic farming), the vineyard has to be modified and the selection of new resistant grape varieties as an alternative is researched intensively today. From January 2018, four new grape varieties that are resistant against mildew and odium have been added to the official catalogue and are now available for planting new vineyards in France: Floreal, Artaban, Vidoc and Voltis. Floreal wines have been described as “very aromatic and very intense with specific notes of grapefruit” during tasting. Unfortunately, there is no data, either qualitative or quantitative, in literature to describe the aromatic quality of this resistant grape variety.

Today we know that the olfactory descriptor of grapefruit is mainly characteristic of 3-mercaptohexan-1-ol (3MH). To reach a deeper understanding of the aromatic potential of Floreal grapes, a combined study of the effects of both viticultural (nitrogen foliar spraying) and enological (cold lees settling) parameters has been carried out.

Methods and Results: After pressing Floreal grapes, corresponding must (with or without cold settling) was inoculated with a high b-lyase activity dry yeast strain at 20 g/hL. Temperature of fermentation was maintained close to 16 °C and we monitored the kinetic of alcoholic fermentation by measuring the rate of CO2 release. Following this, several parameters were quantified: cysteinylated and glutathionylated thiol precursors (during grape maturation and in the must), and 3MH (in the final wine) by SIDA-UPLC-MS/MS. An innovative analysis of both reduced and oxidized forms of 3MH and 3MHA has been also performed in order to indicate possible “wine oxidizability” of such a resistant variety. 

Conclusion: 

First of all, Floreal wines have concentrations in 3MH and 3MHA close to 1300 ng/L (sum of both compounds) which is relatively low in comparison with Colombard or Sauvignon blanc from Gers or Loire Valley, respectively. Thus, Floreal wine aromaticity cannot be only explained by 3MH and 3MHA, and other powerful thiols may be implicated such as 4MMP, opening an avenue for identification of new aroma compounds. 

A surprising and interesting result was the fact that cold lees settling did not significantly improve the level of both 3MH and 3MHA in Floreal wines, whereas this technological practice is commonly used for its positive effect in non-resistant varieties such as Sauvignon blanc. 

Significance and Impact of the Study: Therefore, accurate characterization of this new grape variety and those that will be developed in the coming years represents a great challenge: adapting viticultural and enological practices to produce high quality wines in the future. 

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Gabriel Dournes1, Erick Casalta1, Alain Samson2, Evelyne Aguera2, Jean-Roch Mouret1, Aurélie Roland1*

1UMR SPO, INRAE, Univ Montpellier, Montpellier SupAgro, 2 place Pierre Viala, 34060 Montpellier Cedex 2, France
2 UE Pech Rouge, INRAE, 11430 Gruissan, France

Contact the author

Keywords

Thiol precursors, 3-mercaptohexan-1-ol, nitrogen foliar spraying, cold settling 

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Wine chemical markers assess nitrogen levels in original grape juice

Nitrogen (N) nutrition of the vineyard plays a crucial role in the composition of must and wine, impacting fermentation, as well as the aroma and taste of the final product. N-deficient grape juice can result in increased astringency and bitterness, and a decrease in pleasant aromas in the wine.

Revisiting esters hydrolysis in young white wines

Esters play an essential role in the young white wines’ fruity expression, particularly the groups of ethyl esters of fatty acids (EEFAs) and higher alcohol acetates (HAAs) [1]. However, generally, these groups of esters decrease relatively fast during the first two years of ageing [1, 2].

INFLUENCE OF WINEMAKING VARIABLES AND VINEYARD LOCATIONS ON CHEMICAL AND SENSORY PROFILES OF SOUTH TYROLEAN PINOT BLANC

Pinot Blanc, an important grape variety grown in some mountain areas of Northern Italy such as South Tyrol over the last decades, with its cultivation covering 10.3% of the total vineyards, has compatible climatic conditions (e.g. heat requirements) which are normally found in the geographical areas of the mountain viticulture [1,2,3,4]. Climatic changes are hastening the growth of this variety at higher elevations, particularly for the production of high quality wine.

Exploring changes in browning kinetics, color, and antioxidants due to dealcoholization of wine

The global consumer demand for low or non-alcoholic wine is growing steadily in recent years, driven by health concerns, religious beliefs, and personal taste preferences etc.. Consequently, the removal of alcohol from wine can significantly alter its chemical and sensory properties, including color, aroma, and taste, which make a significant challenge for consumer to accept these products. Ethanol plays a crucial role in various chemical reactions and interactions that contribute to the development of wine’s characteristics.

IMPACT OF CLIMATIC CONDITIONS ON THE SEASONING QUALITY OF OAK WOOD FOR OENOLOGICAL USE (QUERCUS PETRAEA)

For coopers, seasoning and toasting are considered crucial steps in barrel making during which the oak wood develops specific organoleptic properties. Seasoning, carried out in the open air, allows reducing the moisture content of the staves to between 14 and 18% (compared to 70 to 90% after splitting) while modulating the intrinsic composition of the oak wood. Toasting consists of applying different degrees of heat to a barrel for a specific period of time. As the temperature increases, oak wood produces a wide range of chemical compounds through thermal degradation of its intrinsic composition.