Correlation between stable isotopic composition of the fungus aspergillus niger and its growth substrate and the extracted chitin
Abstract
Wine is one of the most consumed and appreciated beverages in the world. Due to the growing attention paid to consumer health, there is a continuous search for sustainable alternatives to common additives (such as sulfur dioxide) used to preserve wine. An example is represented by chitosan, the main derivative of chitin, approved for the treatment of must and wine since 2009 by the “international organization of vine and wine” (oiv/oeno 338a/2009) and by the european commission (ec reg. No. 606/2009). This product can be used in the winemaking field only if of fungal origin, while products obtained from the exoskeleton of crustaceans are not permitted. The methods reported in the oiv monograph to discriminate between the two origins of chitosan are often ineffective or contradictory and the analysis of the stable isotope ratio (sira) of the main bioelements (oxygen δ18o, hydrogen δ2h, carbon δ13c and nitrogen δ15n), already widely used to studying the geographical and botanical origin of foods and food supplements, has also been successfully tested for the characterization of chitosan. The variability ranges of the fungal product for the different isotopic parameters have recently been defined (perini et al., 2020 and claverie at al. 2023) and the inclusion of this analytical method in the polysaccharide monograph has been proposed. To better understand the mechanisms of fungal synthesis of chitin and the chitosan obtained from it by deacetylation, for the first time, in this work the correlation between the isotopic composition of the substrates used for growth, that of the fungus (asperigillus niger) and that of the chitin obtained from it was studied. The fungus was fed with four different diets (diet a-d), based on different sources of carbon (glucose having different δ13c) and nitrogen (kno3 and nh4cl having different δ15n), to verify the differences between the δ13c and δ15n isotope ratios of chitin produced and those of the diet followed by the fungus. The variations in the δ13c c and δ15n isotope ratios of chitin obtained from cultures of a. Niger on two different substrates (diet a, b) during the various phases of its biosynthesis, between 5 and 12 days, were also monitored. For carbon, the change in δ13c (defined as δ13cchitin – δ13cdiet) was -6.8‰ and -7.1‰ for diets a and c, respectively, given a c4 carbon source (δ13c = -10.9 ‰), and -0.4‰ and 0.6‰ for diets b and d, respectively, given a c3 carbon source (δ13c = -23.7‰). Regarding nitrogen, the δ15n variation (defined as δ15nchitin – δ15ndiet) was -6.9‰ and -3.0‰ for diets a and d, respectively, given kno3 (δ15n = 1.3‰) as nitrogen source, and +12.5‰ and -3.0 ‰ for diets b and c respectively, considering nh4cl (δ15n = -1.8‰) as the nitrogen source. Observing the results of the four samplings performed during the growth phase of the fungus on two different substrates (diet a and b), the δ13c reached a constant value from the first sampling of the chitin while the δ15n progressively increased during the sampling in diet b and decreased progressively in diet a. To try to understand the phenomenon, various factors were considered, such as the ph of the nutrient solution in which the fungus grows, and the nitrogen sources used.
Correlazione tra composizione isotopica stabile del fungo aspergillus niger e del suo substrato di crescita e della chitina estratta
Il vino è una delle bevande più consumate e apprezzate al mondo. A causa della crescente attenzione rivolta alla salute dei consumatori vi è una continua ricerca di alternative sostenibili ai comuni additivi (come l’anidride solforosa) utilizzati per la conservazione del vino. Un esempio è rappresentato dal chitosano, il principale derivato della chitina, approvato per il trattamento del mosto e del vino dal 2009 dall’organizzazione internazionale della vigna e del vino” (oiv/oeno 338a/2009) e dalla commissione europea (reg. Ce n. 606/2009). Questo prodotto può essere utilizzato in campo enologico solo se di origine fungina, mentre non sono ammessi prodotti ottenuti da esoscheletro di crostacei. I metodi riportati in monografia oiv per discriminare tra le due origini del chitosano sono spesso inefficaci o contraddittori e l’analisi del rapporto isotopico stabile (sira) dei principali bioelementi (ossigeno δ18o, idrogeno δ2h, carbonio δ13c e azoto δ15n), già ampliamente utilizzata per studiare l’origine geografica e botanica di alimenti e integratori alimentari, è stata testato con successo anche per la caratterizzazione del chitosano. Recentemente sono stati definiti gli intervalli di variabilità del prodotto fungino per i diversi parametri isotopici (perini et al., 2020 e claverie at al. 2023) ed è stata proposta l’inclusione di questo metodo analitico nella monografia del polisaccaride. Per meglio comprendere i meccanismi di sintesi fungina della chitina e del chitosano da essa ottenuto per deacetilazione, per la prima volta, in questo lavoro è stata studiata la correlazione tra la composizione isotopica dei substrati utilizzati per la crescita, quella del fungo (asperigillus niger) e quella della chitina da esso ottenuta. Il fungo è stato alimentato con quattro diverse diete (dieta a-d), basate su diverse fonti di carbonio (glucosio avente δ13c diverso) e azoto (kno3 e nh4cl avente δ15n diverso), per verificare le differenze tra i rapporti isotopici δ13c e δ15n della chitina prodotta e quelli della dieta seguita dal fungo. Sono state inoltre monitorate le variazioni dei rapporti isotopici δ13c e δ15n della chitina ottenuta da colture di a. Niger su due diversi substrati (dieta a, b) durante le varie fasi della sua biosintesi, compresa tra 5 e 12 giorni. Per il carbonio, la variazione del δ13c (definita come δ13cchitin – δ13cdiet) è stata -6,8‰ e -7,1‰ per le diete a e c, rispettivamente, data una fonte di carbonio c4 (δ13c = -10,9 ‰), e -0,4‰ e 0,6‰ per le diete b e d, rispettivamente, data una fonte di carbonio c3 (δ15n = -23,7‰). Per quanto riguarda l’azoto, la variazione δ15n (definita come δ15nchitin – δ15ndiet è stata -6,9‰ e -3,0‰ per le diete a e d, rispettivamente, dato kno3 (δ15n = 1,3‰) come fonte di azoto, e +12,5‰ e -3,0 ‰ rispettivamente per le diete b e c, considerando nh4cl (δ15n = -1,8‰) come fonte di azoto. Osservando i risultati dei quattro campionamenti eseguiti durante la fase di crescita del fungo su due diversi substrati (dieta a e b), il δ13c raggiungeva un valore costante fin dal primo campionamento della chitina mentre il δ15n aumentava progressivamente durante il campionamento nella dieta b e diminuiva progressivamente nella dieta a. Per cercare di comprendere il fenomeno sono stati considerati diversi fattori, come il ph della soluzione nutritiva in cui cresce il fungo, e le fonti di azoto utilizzate.
взаимосвязь стабильного изотопного состава гриба aspergillus niger с его ростовым субстратом и экстрагируемым хитином
Bино – один из самых потребляемых и ценимых напитков в мире. В связи с растущим вниманием, уделяемым здоровью потребителей, ведется постоянный поиск устойчивых альтернатив обычным добавкам (таким как диоксид серы), используемым для консервирования вина. Примером может служить хитозан, основное производное хитина, одобренный для обработки сусла и вина с 2009 года «международной организацией винограда и вина» (oiv/oeno 338a/2009) и европейской комиссией (ec reg. № 606/2009). Этот продукт можно использовать в винодельческой сфере только в том случае, если он имеет грибковое происхождение, в то время как продукты, полученные из экзоскелета ракообразных, не допускаются. Методы различения двух источников хитозана, представленные в монографии oiv, часто неэффективны или противоречивы, а анализ соотношения стабильных изотопов (sira) основных биоэлементов (кислорода δ18o, водорода δ2h, углерода δ13c и азота δ15n) уже широко используемый для изучения географического и ботанического происхождения продуктов питания и пищевых добавок, он также был успешно протестирован для характеристики хитозана. Недавно были определены диапазоны изменчивости грибного продукта для различных изотопных параметров (перини и др., 2020 и клавери и др., 2023), и было предложено включение этого аналитического метода в монографию по полисахаридам. Для лучшего понимания механизмов грибного синтеза хитина и хитозана, полученного из него деацетилированием, в данной работе впервые была изучена корреляция между изотопным составом субстратов, используемых для роста, и гриба (asperigillus niger). И полученного из него хитина. Грибу давали четыре разных рациона (диета a-d), основанных на разных источниках углерода (глюкоза с разным δ13c) и азота (kno3 и nh4cl с разным δ15n), чтобы проверить различия между соотношениями изотопов δ13c и δ15n образующегося хитина и те из диеты, за которой следует гриб. Также отслеживали изменения изотопных соотношений δ13c и δ15n хитина, полученного из культур a. Niger на двух разных субстратах (диета а, б) в разные фазы его биосинтеза, от 5 до 12 дней. Что касается углерода, изменение δ13c (определяемого как δ13c chitin – δ13c diet) составило -6,8‰ и -7,1‰ для рационов a и c соответственно, учитывая источник углерода c4 (δ13c = -10,9 ‰), и -0,4‰ и 0,6‰. Для рационов b и d соответственно с учетом источника углерода c3 (δ15n = -23,7‰). Что касается азота, вариация δ15n (определяемая как δ15n chitin – δ15n diet) составляла -6,9‰ и -3,0‰ для рационов a и d соответственно, учитывая kno3 (δ15n = 1,3‰) в качестве источника азота, и +12,5‰ и -3,0‰. Для рационов b и c соответственно, рассматривая nh4cl (δ15n = -1,8‰) в качестве источника азота. Наблюдая за результатами четырех отборов проб, выполненных во время фазы роста гриба на двух разных субстратах (диета а и б), δ13c достиг постоянного значения с момента первого отбора хитина, тогда как δ15n постепенно увеличивался во время отбора проб на диете b. И постепенно снижался в диете а. Чтобы попытаться понять это явление, были рассмотрены различные факторы, такие как ph питательного раствора, в котором растет гриб, и используемые источники азота.
Issue: OIV 2024
Type: Article
Authors
¹ Fondazione Edmund Mach, Via E. Mach n. 2, San Michele all’Adige (Trento), Italy