Terroir 2020 banner
IVES 9 IVES Conference Series 9 Leaf removal to regulate fruit ripening in Cabernet-Sauvignon

Leaf removal to regulate fruit ripening in Cabernet-Sauvignon

Abstract

Aim: Under the effects of climate change it is becoming increasingly common to observe excessively fast sugar accumulation while anthocyanin and flavour development are lagging behind. Understanding the impact of different leaf removal techniques on ripening will provide vineyard managers with a canopy management strategy suitable for regulating sugar accumulation, phenolic maturity and flavour ripeness, thereby helping to mitigate these negative effects. The aim of this research was to quantify the impacts of three different leaf removal techniques on the canopy architecture and ripening of Cabernet Sauvignon.

Methods and Results: Treatments were performed at veraison (~14 °Brix) and included: i) Control, ii) Leaf plucking around the bunches iii) Leaf plucking the top two thirds of shoots apical to the bunches, and iv) Shoot trimming. On the date of harvest no significant difference in grape TSS was observed between treatments. Other results including the effect of the treatments on acidity, anthocyanins, phenolics, and tannins were somewhat inconclusive.

Conclusions:

While various other studies have shown the potential to achieve slower grape sugar accumulation without affecting the concentration of anthocyanins, phenolics, and tannins, the results of this study do not indicate a decrease in the rate of grape sugar accumulation as a result of the investigated defoliation techniques.

Significance and Impact of the Study: Given the cost of implementing these treatments the results of this study do not support the use of these methods for the purpose of delaying fruit ripening in a hot Australian climate.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Patrick O’Brien1, Cassandra Collins1,2, Roberta De Bei1*

1The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Institute, PMB 1 Glen Osmond, 5064, South Australia, Australia.
2ARC Industrial Transformation Training Centre for Innovative Wine Production, Waite Research Institute, PMB 1 Glen Osmond, 5064, South Australia, Australia

Contact the author

Keywords

Delayed ripening, leaf removal, shoot trimming, canopy management, Cabernet-Sauvignon

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Understanding graft union formation by using metabolomic and transcriptomic approaches during the first days after grafting in grapevine

Since the arrival of Phyloxera (Daktulosphaira vitifolia) in Europe at the end of the 19th century, grafting has become essential to cultivate Vitis vinifera. Today, grafting provides not only resistance to this aphid, but it used to adapt the cultivars according to the type of soil, environment, or grape production requirements by using a panel of rootstocks. As part of vineyard decline, it is often mentioned the importance of producing quality grafted grapevine to improve vineyard longevity, but, to our knowledge, no study has been able to demonstrate that grafting has a role in this context. However, some scion/rootstock combinations are considered as incompatible due to poor graft union formation and subsequently high plant mortality soon after grafting. In a context of climate change where the creation of new cultivars and rootstocks is at the centre of research, the ability of new cultivars to be grafted is therefore essential. The early identification of graft incompatibility could allow the selection of non-viable plants before planting and would have a beneficial impact on research and development in the nursery sector. For this reason, our studies have focused on the identification of metabolic and transcriptomic markers of poor grafting success during the first days/week after grafting; we have identified some correlations between some specialized metabolites, especially stilbenes, and grafting success, as well as an accumulation of some amino acids in the incompatible combination. The study of the metabolome and the transcriptome allowed us to understand and characterise the processes involved during graft union formation.

Tomatoes and Grapes: berry fruits with a (bright) biotech future?

Tomatoes and Grapes are berries that are genetically related and therefore at least partially their developmental pathways leading to a fleshy fruit should share some of the components. In a sense knowledge obtained from the model plant tomato could be useful for grape and conversely the more amenable tomato can be used to test some hypothesis that would be difficult to obtain in grape. Research in my lab and other labs have led to a better understanding of the molecular genetics mechanisms underlying fruit development and ripening in tomato and more specifically those related to metabolite accumulation that may lead to changes in fruit nutritional and flavor composition. This research has involved the use of genetic variability in natural population, but also biparental population and genetically engineered lines that are easy to develop in tomato tomato but not in grape. NGTs also can be easily implemented in tomato to not only speed up the gene-to-trait but also develop new tomato varieties.

From grapevines to extreme environments … and back?

I performed my PhD in grapevine physiology under the supervision of Dr. H. Medrano, standing in the vineyards from pre-dawn to sunrise during many hot, wet and sunny days with my colleagues J.M.E. and J.B. I also spent many days and nights facing ticks year-round working in Mediterranean macchias with J.Gu. and M.M. Later I was able to supervise PhD students on grapevines – like A.P. and M.T. – and on Mediterranean vegetation – like J.Gal. With the incorporation to the group of M.R.-C. ‘the puzzle’ was completed and, combining the aforementioned studies, we could conclude (more than 20 years ago) things like: (1) stomatal conductance is the best proxy for ‘water stress’ in studies on photosynthesis; (2) steady-state chlorophyll fluorescence retrieves photosynthesis under saturating light; (3) photoinhibition is not a major photosynthetic limitation under water stress; (4) mesophyll conductance instead is; and (5) mesophyll conductance is a major driver of leaf water use efficiency.

Is your juice truly organic? An isotopic approach for certifying organic grape juice

The sustainability and authenticity of grape juice production have gained increasing attention, particularly regarding the environmental impact and health benefits of organic practices.

Vitiforestry as innovative heritage. Adaptive conservation of historical wine-growing landscapes as response to XXI century’s challenges.

Traditional agricultural and agro-pastoral systems (prior to industrial revolution) often have the characteristic of being multiple systems, in which multiple crops are hosted simultaneously on the same plot. currently research suggests to study more in depth the potential of multiple agricultural systems in order to detect those characteristics of multiple agrarian systems that could allow modern viticulture to adapt to the challenges posed by climate change: rising temperatures with impacts on the phenological cycle of the vine, resurgence of plant deseases, extreme soil washout phenomena and hail storms, among others.