Terroir 2020 banner
IVES 9 IVES Conference Series 9 Leaf removal to regulate fruit ripening in Cabernet-Sauvignon

Leaf removal to regulate fruit ripening in Cabernet-Sauvignon

Abstract

Aim: Under the effects of climate change it is becoming increasingly common to observe excessively fast sugar accumulation while anthocyanin and flavour development are lagging behind. Understanding the impact of different leaf removal techniques on ripening will provide vineyard managers with a canopy management strategy suitable for regulating sugar accumulation, phenolic maturity and flavour ripeness, thereby helping to mitigate these negative effects. The aim of this research was to quantify the impacts of three different leaf removal techniques on the canopy architecture and ripening of Cabernet Sauvignon.

Methods and Results: Treatments were performed at veraison (~14 °Brix) and included: i) Control, ii) Leaf plucking around the bunches iii) Leaf plucking the top two thirds of shoots apical to the bunches, and iv) Shoot trimming. On the date of harvest no significant difference in grape TSS was observed between treatments. Other results including the effect of the treatments on acidity, anthocyanins, phenolics, and tannins were somewhat inconclusive.

Conclusions:

While various other studies have shown the potential to achieve slower grape sugar accumulation without affecting the concentration of anthocyanins, phenolics, and tannins, the results of this study do not indicate a decrease in the rate of grape sugar accumulation as a result of the investigated defoliation techniques.

Significance and Impact of the Study: Given the cost of implementing these treatments the results of this study do not support the use of these methods for the purpose of delaying fruit ripening in a hot Australian climate.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Patrick O’Brien1, Cassandra Collins1,2, Roberta De Bei1*

1The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Institute, PMB 1 Glen Osmond, 5064, South Australia, Australia.
2ARC Industrial Transformation Training Centre for Innovative Wine Production, Waite Research Institute, PMB 1 Glen Osmond, 5064, South Australia, Australia

Contact the author

Keywords

Delayed ripening, leaf removal, shoot trimming, canopy management, Cabernet-Sauvignon

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Vineyard innovative tools based on the integration of earth observation services and in-field sensors (VitiGEOSS project)

Climate change is having an unprecedented impact on the wine industry, which is one of the major agricultural sectors around the world. Global warming, combined with the variation in rainfall patterns and the increase in frequency of extreme weather events, is significantly influencing vine physiology and exposing, more frequently, plants to severe biotic and abiotic stresses. This represents a challenge for viticulturists who need to take complex decisions to adjust vineyard management and achieve oenological goals.

De novo Vitis champinii whole genome assembly allows rootstock-specific identification of potential candidate genes for drought and salt tolerance

Vitis champinii cultivars Ramsey and Dog-ridge are main choices for rootstocks to adapt viticulture in semi-arid and arid regions thanks to their distinctive tolerance to drought and salinity. However, genetic studies on non-vinifera rootstocks have heavily relied on the grapevine (Vitis vinifera) reference genome, which difficulted the assessment of the genetic variation between rootstock species and grapevines. In the present study, this limitation is addressed by introducing a novo phased genome assembly and annotation of Vitis champinii. This new Vitis champinii genome was employed as reference for mapping RNA-seq reads from the same species under drought and salt stresses, and for comparison the same reads were also mapped to the Vitis vinifera PN40024.V4 reference genome. A significant increase in alignment rate was gained when mapping Vitis champinii RNA-seq reads to its own genome, compared to the Vitis vinifera PN40024.V4 reference genome, thus revealing the expression levels of genes specific to Vitis champinii. Moreover, differences in coding sequences were observed in ortholog genes between Vitis champinii and Vitis vinifera, which therefore challenges previous differential expression analyses performed between contrasting Vitis genotypes on the same gene from the Vitis vinifera genome. Genes with possible implications in drought and salt tolerance have been identified across the genome of Vitis champinii, and the same genomic data can potentially guide the discovery of candidate genes specific from Vitis champinii for other traits of interest, therefore becoming a valuable resource for rootstock breeding designs, specially towards increased drought and salinity due to climate change.

Sustainable wine industry: supercritical fluid extraction as key technology for biorefinery enhancement

Supercritical carbon dioxide (sc-CO2) extraction is an environmentally friendly technology employed for bioactive compounds recovery from various natural sources and biomasses. The advantages of sc-co2 extraction include its selectivity, relatively mild operating conditions, which minimize the degradation of sensitive compounds, and the absence of potentially harmful organic solvents.

On the meaning of looking for terroir perceptions in blind tastings

If one considers as “physical or sensory attributes” of a wine its concentrations of alcohol and of other substances, it can be stated that another class of attributes exists

Spotted lanternfly, a new invasive insect in vineyards: is it a threat to grapevines?

The spotted lanternfly (SLF; Lycorma delicatula) is a phloem-feeding polyphagous insect invasive to the Eastern U.S.. Since its first detection in Pennsylvania (U.S.) in 2014, large infestations and economic damage (e.g., decreased yield, vine decline, greater pesticide use) have been reported in an increasing number of vineyards, threatening the sustainability and growth of the wine industry in infested regions. Our team has been investigating the impacts of SLF phloem-feeding on physiological processes, fruit production, juice, and wine composition of different grape cultivars, and also evaluated if the SLF can transmit important grapevine pathogens. In addition, we are working closely with stakeholders to better enumerate the economic damage caused by this pest. These findings will provide relevant information to grape and wine producers to help identify action thresholds and develop a more targeted integrated pest management program.