Terroir 2020 banner
IVES 9 IVES Conference Series 9 Leaf removal to regulate fruit ripening in Cabernet-Sauvignon

Leaf removal to regulate fruit ripening in Cabernet-Sauvignon

Abstract

Aim: Under the effects of climate change it is becoming increasingly common to observe excessively fast sugar accumulation while anthocyanin and flavour development are lagging behind. Understanding the impact of different leaf removal techniques on ripening will provide vineyard managers with a canopy management strategy suitable for regulating sugar accumulation, phenolic maturity and flavour ripeness, thereby helping to mitigate these negative effects. The aim of this research was to quantify the impacts of three different leaf removal techniques on the canopy architecture and ripening of Cabernet Sauvignon.

Methods and Results: Treatments were performed at veraison (~14 °Brix) and included: i) Control, ii) Leaf plucking around the bunches iii) Leaf plucking the top two thirds of shoots apical to the bunches, and iv) Shoot trimming. On the date of harvest no significant difference in grape TSS was observed between treatments. Other results including the effect of the treatments on acidity, anthocyanins, phenolics, and tannins were somewhat inconclusive.

Conclusions:

While various other studies have shown the potential to achieve slower grape sugar accumulation without affecting the concentration of anthocyanins, phenolics, and tannins, the results of this study do not indicate a decrease in the rate of grape sugar accumulation as a result of the investigated defoliation techniques.

Significance and Impact of the Study: Given the cost of implementing these treatments the results of this study do not support the use of these methods for the purpose of delaying fruit ripening in a hot Australian climate.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Patrick O’Brien1, Cassandra Collins1,2, Roberta De Bei1*

1The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Institute, PMB 1 Glen Osmond, 5064, South Australia, Australia.
2ARC Industrial Transformation Training Centre for Innovative Wine Production, Waite Research Institute, PMB 1 Glen Osmond, 5064, South Australia, Australia

Contact the author

Keywords

Delayed ripening, leaf removal, shoot trimming, canopy management, Cabernet-Sauvignon

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Seasonal dynamics of water and sugar compartmentalization in grape clusters under deficit irrigation

Water stress triggers functional compartmentalization in grapevines, influencing how resources are allocated to different plant organs.

Testing the pathogen e-learning and field training course on grapevine virus knowledge and management

One of the reasons of the spread of grapevine virus diseases in
vineyards around the world is the lack of knowledge by the main actors of the wine sector. To face this problem, five partners worked together to develop the PAThOGEN project, a training program aimed to improve grapevine virus knowledge and management. The partnership gathers one French technical center (IFV), one Spanish university (USC), one Italian applied research center (CREA), one Spanish foundation
specialized in training and technology transfer (FEUGA) and one Italian SME specialized in the development of informatics tools and in knowledge transfer (HORTA).The objectives of PAThOGEN are: (i) to develop and
maintain a high-quality work-based Vocational and Education Training program, (ii) to improve the skills of professionals of the wine sector.

Haplotype-Resolved genome assembly of the Microvine

Developing a tractable genetic engineering and gene editing system is an essential tool for grapevine. We initiated a plant transformation and biotechnology program at Oregon State University using the grape microvine system (V. vinifera) in 2018 to interrogate gene-to-trait relationships using traditional genetic engineering and gene editing. The microvine model is also used for nanomaterial-assisted RNP, DNA, and RNA delivery. Most reference genomes and annotations for grapevine are collapsed assemblies of homologous chromosomes and do not represent the specific microvine cultivar ‘043023V004’ under study at our institution.

Towards multi-purpose valorisation of polyphenols from grape pomace: Pressurized liquid extraction coupled to purification by membrane processes

Grape by-products (including skins, seeds, stems and vine shoots) are rich in health promoting polyphenols. Their extraction from winery waste and their following purification are of special interest to produce extracts with high added value compounds. Meanwhile, the growing concern over environmental problems associated with economic constraints, require the development of environmentally sustainable extraction technologies. The extraction using semi-continuous subcritical water, as a natural solvent at high temperature and high pressure a technology is promising “green” technology that is environmentally friendly, energy efficient and improve the extraction process in plant tissues.

Implementation of a deep learning-based approach for detecting and localising automatically grapevine leaves with downy mildew symptoms

Grapevine downy mildew is a disease of foliage caused by Oomycete Plasmopara viticola an endoparasite that develops inside grapevine organs and can infect virtually every green organ. Downy mildew is one of the most destructive diseases in wine-growing regions, drastically reducing yield and fruit quality. Traditional manual disease detection relies on farm experts. Human field scouting has been widely used for monitoring the disease progress, however, is costly, laborious, subjective, and often imprecise.