Terroir 2020 banner
IVES 9 IVES Conference Series 9 Leaf removal to regulate fruit ripening in Cabernet-Sauvignon

Leaf removal to regulate fruit ripening in Cabernet-Sauvignon

Abstract

Aim: Under the effects of climate change it is becoming increasingly common to observe excessively fast sugar accumulation while anthocyanin and flavour development are lagging behind. Understanding the impact of different leaf removal techniques on ripening will provide vineyard managers with a canopy management strategy suitable for regulating sugar accumulation, phenolic maturity and flavour ripeness, thereby helping to mitigate these negative effects. The aim of this research was to quantify the impacts of three different leaf removal techniques on the canopy architecture and ripening of Cabernet Sauvignon.

Methods and Results: Treatments were performed at veraison (~14 °Brix) and included: i) Control, ii) Leaf plucking around the bunches iii) Leaf plucking the top two thirds of shoots apical to the bunches, and iv) Shoot trimming. On the date of harvest no significant difference in grape TSS was observed between treatments. Other results including the effect of the treatments on acidity, anthocyanins, phenolics, and tannins were somewhat inconclusive.

Conclusions:

While various other studies have shown the potential to achieve slower grape sugar accumulation without affecting the concentration of anthocyanins, phenolics, and tannins, the results of this study do not indicate a decrease in the rate of grape sugar accumulation as a result of the investigated defoliation techniques.

Significance and Impact of the Study: Given the cost of implementing these treatments the results of this study do not support the use of these methods for the purpose of delaying fruit ripening in a hot Australian climate.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Patrick O’Brien1, Cassandra Collins1,2, Roberta De Bei1*

1The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Institute, PMB 1 Glen Osmond, 5064, South Australia, Australia.
2ARC Industrial Transformation Training Centre for Innovative Wine Production, Waite Research Institute, PMB 1 Glen Osmond, 5064, South Australia, Australia

Contact the author

Keywords

Delayed ripening, leaf removal, shoot trimming, canopy management, Cabernet-Sauvignon

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes.

Red wines from southwest France, Lebanon and South Korea: study of phenolic composition and antioxidant and biological activities according to grape varieties and winemaking processes

The phenolic compounds present in the wine are responsible for reducing the risk of developing chronic diseases (cardiovascular, cancer, diabetes, Alzheimer …) because of their antioxidant activities and the presence of nutraceutical molecules with targeted biological activities. Polyphenols not only contribute to the “French paradox” but also contribute to give the wine its color, structure, aroma and allow a long-term preservation.

Influence of basalt on the terroir of the Columbia Valley American Viticultural Area

The Columbia Valley American Viticultural Area (AVA) of the Pacific Northwest, USA is the world’s largest officially recognized viticultural area with basalt bedrock.

Grapevine varietal diversity as mitigation tool for climate change: Agronomic and oenologic potential of 14 foreign varieties grown in Languedoc region (France)

Climate change effects in Languedoc include an expected rise in temperatures, increased evapotranspiration as well as more severe and frequent climatic hazards, such as frost, drought periods and heat waves. For winegrowers theses phenomena impact both yield and quality, resulting in more frequent unbalanced wines. Research on identified mitigation tools for vineyard management is necessary to improve resilience of grapevine agrosystems. Varietal assortment is one of them. This study focuses on agronomic and oenologic potential of 14 foreign varieties grown in Languedoc French region. Fourteen grapevine varieties were monitored during 2021 from June until harvest on eight different sites, some of which occurring on more than one site adding up to 21 different modalities: 7 white varieties Alvarinho B, Assyrtiko B (2), Malvasia Istriana B, Parellada B, Verdejo B, Verdelho B, Xarello B, and 7 black varieties Saperavi N (2), Touriga nacional N, Baga N, Aleatico N, Montepulciano N (2), Primitivo N (3), Calabrese N (3). Varietals were compared through the following parameters: phenology was assessed by using the information collected in the Database Network of French Vine Conservatories (INRAE-SupAgro-IFV, 2005-2015). The number of inflorescences for shoots from secondary buds and bourillons and suckers were observed to assess post-bud break frost tolerance potential. Grapevine water status was studied through stem water potential measurement, observation of foliage symptoms of drought, and 𝛿13C on must. Frequencies and intensities of downy mildew, powdery mildew, and black rot attacks were estimated before harvest on leaves and clusters and botrytis at harvest to assess disease susceptibilities. Berry composition was monitored from end of veraison until harvest. Yield and mean bunch weight were also calculated. Varieties were then ranked on a 1-4 scale for each parameter and compared through PCA. Forty two stations of the Mediterranean basin were compared by PCA with the Multicriteria Climatic Classification indicators in order to confront the collected information during 2021 campaign to the hypothesis that plants coming from dry and hot regions are genetically adapted to such climatic conditions.

MONITOR SOME KEY PARAMETERS THROUGH THE IMPLEMENTATION OFCONTINUOUS CONTROL SYSTEMS OF THE MUST-WINE DURING MACERATION-FERMENTATION IN RED WINEMAKING TO MANAGE OPERATIONS IN “AUTOMATION”

This study is aimed to develop a complete tool for the winemaker with, complete and targeted “winemaking recipes” that can be adapted to criteria set by the winemaker, such as: grape variety, grape health status, degree of ripening, desired wine, redox status throughout the alcoholic fermentation.
To get such aim, specific sets of experiments using red grape juices from different varieties (Nebbiolo, Barbera, Pinot noir, etc.) collected at different technological and phenolic maturity points, will be held with “automatized 4.0 tanks” equipped with sensors for measuring: redox potential, dissolved oxygen, relative density, temperature, and color in order to collect a sufficient amount of data preparatory to the creation of operating models in the most widely winemaking situations in which the automatized 4.0 tanks “will be able to independently respond” with the right corrective actions (opening/closing aeration valve, execution/block pumping overs , etc.) if the key parameters exceed the limits of the recommended ranges set in the selected recipe.