Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Zeowine: the synergy of zeolite and compost. Effects on vine physiology and grape quality

Zeowine: the synergy of zeolite and compost. Effects on vine physiology and grape quality

Abstract

The trial aims to improve the protection and management of the soil, the well-being of the plant and the quality of production in the wine supply chain organic and biodynamic, using an innovative product “ZEOWINE” resulting from the composting of waste of the wine and zeolite supply chain. At present, the use of zeolites in agriculture is a fast-spreading practice; their application to soils (both as natural zeolites and in combination with organic and mineral fertilizers) not only increases production but also leads to the exaltation of quality indices. The research was conducted in the 2019 season in San Miniato (Tuscany) on the vineyard of Sangiovese in production, performing the following inter-row treatments at the beginning of January: organic company fertilizer, zeolite (clinopthylolite) and zeowine (combination zeolite and corporate compost obtained through grape processing scraps) in the respective doses of 20 t/ha, 10 t/ha and 30 t/ha. Following the treatment, were measured gas exchanges and water potential, berry weight, °Brix, pH, acidity, total and extractable anthoclyanins and polyphenols. Treatments with Zeowine and zeolites reduced water stress. In Zeowine treatment, sugars are lower, while acidity, pH and berry weight do not vary from control. Statistical differences are also noted in the concentrations of anthoclyanins and polyphenols. Results suggest a positive impact of Zeowine treatment on physiology and quality characteristics in V.vinifera.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Eleonora Cataldo, Linda Salvi, Giovann Battista Mattii

Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50019 Sesto Fiorentino (FI), Italy

Contact the author

Keywords

ecophysiology, Zeowine, zeolite, water potential, compost

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

A new AI-based system for early and accurate vineyard yield forecasting

Vineyard yield forecasting is a key issue for vintage scheduling and optimization of winemaking operations. High errors in yield forecasting can be found in the wine industry, mainly due to the high spatial variability in vineyards, strong dependency on historical yield data, insufficient use of agroclimatic data and inadequate sampling methods

Evaluating the greenness of wine analytical chemistry: A new metric approach

Wine is a complex matrix whose composition depends on climatic, agricultural, and winemaking factors, making quality control and authenticity assessment critical in the global market.

Évolution de la surmaturation du cépage Chenin dans différents terroirs des Coteaux du Layon en relation avec les variables agroviticoles

The French “Coteaux du Layon” Appellation of Origin has built its Jarne on the production of sweet white wines. A network of experimental plots, based on the “terroir” concept, was established in 1990; it allows for the follow-up of the overripening behaviour of the grapes in relation with the agroviticultural parameters.

Local ancient grapevine cultivars to face future viticulture

Among the different strategies to cope with the negative impacts of climate change on viticulture, the exploitation of genetic diversity is one of the most promising to adapt to new conditions and maintain wine production and quality. One of the biggest concerns in the context of climate change is to improve water use efficiency (WUE). In this way, the use of genotypes that present a better response to drought and high WUE is a key issue. In this work, physiological performance analysis was conducted to compare the water deficit stress (WDS) responses of local and widespread grapevines cultivars. Leaf gas exchange, water use efficiency (WUE) at different levels (leaf and long-term WUE (∆13C)), leaf osmotic adjustment and other water relations parameters were determined in plants under well-watered and WDS conditions alongside assessment of the levels of foliar hormones concentrations. Results denote that local cultivars displayed better physiological performance under WDS as compared to the widely-distributed ones. he results corroborate the hypothesis that better stomatal control allows increasing leaf WUE under drought as occurred in the local Callet cv.; but the minority local cultivar Escursac cv. showed high WUE under both treatments. In this case, high WUE can be related to maintaining higher photosynthetic activity under drought. The different mechanisms underlying the better performance under WDS and high WUE of minority local cultivars are discussed.

Leaf elemental composition in a replicated hybrid grape progeny grown in distinct climates

The elemental composition (the ionome) of grape leaves is an important indicator of nutritional
health, but its genetic architecture has received limited scientific attention. In this study, we
analyzed the leaf ionome of 131 interspecific F1 hybrid progeny from a Vitis rupestris (♀) X Vitis
riparia (♂) cross. The progeny were replicated in New York, South Dakota, Southwest Missouri ad Central Missouri, and the concentration of 20 elements were measured in their leaves at
three different phenological stages during the growing season. In leaves collected at the apical node at anthesis, elemental concentrations correlated in a consistent manner (p < 0.05) across all four geographic locations. In subsequent phenological stages, elemental ratios in the apical-node leaves remained consistent across the South Dakota and New York sites, but not across the Missouri sites. In leaves collected at the basal and middle nodes, correlations varied greatly across all locations.