Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Zeowine: the synergy of zeolite and compost. Effects on vine physiology and grape quality

Zeowine: the synergy of zeolite and compost. Effects on vine physiology and grape quality

Abstract

The trial aims to improve the protection and management of the soil, the well-being of the plant and the quality of production in the wine supply chain organic and biodynamic, using an innovative product “ZEOWINE” resulting from the composting of waste of the wine and zeolite supply chain. At present, the use of zeolites in agriculture is a fast-spreading practice; their application to soils (both as natural zeolites and in combination with organic and mineral fertilizers) not only increases production but also leads to the exaltation of quality indices. The research was conducted in the 2019 season in San Miniato (Tuscany) on the vineyard of Sangiovese in production, performing the following inter-row treatments at the beginning of January: organic company fertilizer, zeolite (clinopthylolite) and zeowine (combination zeolite and corporate compost obtained through grape processing scraps) in the respective doses of 20 t/ha, 10 t/ha and 30 t/ha. Following the treatment, were measured gas exchanges and water potential, berry weight, °Brix, pH, acidity, total and extractable anthoclyanins and polyphenols. Treatments with Zeowine and zeolites reduced water stress. In Zeowine treatment, sugars are lower, while acidity, pH and berry weight do not vary from control. Statistical differences are also noted in the concentrations of anthoclyanins and polyphenols. Results suggest a positive impact of Zeowine treatment on physiology and quality characteristics in V.vinifera.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Eleonora Cataldo, Linda Salvi, Giovann Battista Mattii

Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50019 Sesto Fiorentino (FI), Italy

Contact the author

Keywords

ecophysiology, Zeowine, zeolite, water potential, compost

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Towards a regional mapping of vine water status based on crowdsourcing observations

Monitoring vine water status is a major challenge for vineyard management because it influences both yield and harvest quality. It is also a challenge at the territorial scale for identifying periods of high water restriction or zones regularly impacted by water stress. This information is of major importance for defining collective strategies, anticipating harvest logistic or applying for irrigation authorisation. At this spatial scale, existing tools and methods for monitoring vine water status are few and often require strong assumptions (e.g. water balance model). This paper proposes to consider a collaborative collection of observations by winegrowers and wine industry stakeholders (crowdsourcing) as an interesting alternative. Indeed, it allows the collection of a large number of field observations while pooling the collection effort. However, the feasibility of such a project and its interest in monitoring vine water status at regional scale has never been tested. The objective of this article is to explore the possibility of making a regional map of vine water status based on crowdsourcing observations. It is based on the study of the free mobile application ApeX-Vigne, which allows the collection of observations about vine shoot growth. This information is easy to collect and can be considered, under certain conditions, as a proxy for vine water status. This article presents the first results obtained from the nearly 18,000 observations collected by winegrowers and wine industry stakeholders during 2019, 2020 and 2021 seasons. It presents the vine shoot growth maps obtained at regional scale and their evolution over the three vintages studied. It also proposes an analysis of the factors that favoured the number of observations collected and those that favoured their quality. These results open up new perspectives for monitoring vine water status at a regional scale but above they provide references for other crowdsourcing projects in viticulture.

Impact of the fumaric acid/glutathione pair addition before bottling on Cabernet Sauvignon wine quality

Over the last decades, climate change and rising temperatures have impacted the wine industry. Wines from warm regions tend to have a higher pH and lower total acidity.

INTEGRAPE guidelines and tools: an effort of COST Action CA17111

INTEGRAPE was a European interdisciplinary network for “data integration to maximize the power of omics for grapevine improvement” (CA17111, https://integrape.eu/), funded by the European COST Association from September 2018 to 2022. This Action successfully developed guidelines and tools for data management and promoted the best practices in grapevine omics studies with a holistic future vision of: “Imagine having all data on grapevine accessible in a single place”.

Dissecting the polysaccharide‐rich grape cell wall matrix during the red winemaking process, using high‐throughput and fractionation methods

Limited information is available on grape wall-derived polymeric structure/composition and how this changes during fermentation. Commercial winemaking operations use enzymes that target the polysaccharide-rich polymers of the cell walls of grape tissues to clarify musts and extract pigments during the fermentations. In this study we have assessed changes in polysaccharide composition/ turnover throughout the winemaking process by applying recently developed cell wall profiling approaches to both wine and pomace polysaccharides. The methods included gas chromatography for monosaccharide composition (GC-MS), infra-red (IR) spectroscopy and comprehensive microarray polymer profiling
(CoMPP) using cell wall probes.

Variety and climatic effects on quality scores in the Western US winegrowing regions

Wine quality is strongly linked to climate. Quality scores are often driven by climate variation across different winegrowing regions and years, but also influenced by other aspects of terroir, including variety. While recent work has looked at the relationship between quality scores and climate across many European regions, less work has examined New World winegrowing regions. Here we used scores from three major rating systems (Wine Advocate, Wine Enthusiast and Wine Spectator) combined with daily climate and phenology data to understand what drives variation across wine quality scores in major regions of the Western US, including regions in California, Oregon and Washington. We examined effects of variety, region, and in what phenological period climate was most predictive of quality. As in other studies, we found climate, based mainly on growing degree day (GDD) models, was generally associated with quality—with higher GDD associated with higher scores—but variety and region also had strong effects. Effects of region were generally stronger than variety. Certain varieties received the highest scores in only some areas, while other varieties (e.g., Merlot) generally scored lower across regions. Across phenological stages, GDD during budbreak was often most strongly associated with quality. Our results support other studies that warmer periods generally drive high quality wines, but highlight how much region and variety drive variation in scores outside of climate.