Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Zeowine: the synergy of zeolite and compost. Effects on vine physiology and grape quality

Zeowine: the synergy of zeolite and compost. Effects on vine physiology and grape quality

Abstract

The trial aims to improve the protection and management of the soil, the well-being of the plant and the quality of production in the wine supply chain organic and biodynamic, using an innovative product “ZEOWINE” resulting from the composting of waste of the wine and zeolite supply chain. At present, the use of zeolites in agriculture is a fast-spreading practice; their application to soils (both as natural zeolites and in combination with organic and mineral fertilizers) not only increases production but also leads to the exaltation of quality indices. The research was conducted in the 2019 season in San Miniato (Tuscany) on the vineyard of Sangiovese in production, performing the following inter-row treatments at the beginning of January: organic company fertilizer, zeolite (clinopthylolite) and zeowine (combination zeolite and corporate compost obtained through grape processing scraps) in the respective doses of 20 t/ha, 10 t/ha and 30 t/ha. Following the treatment, were measured gas exchanges and water potential, berry weight, °Brix, pH, acidity, total and extractable anthoclyanins and polyphenols. Treatments with Zeowine and zeolites reduced water stress. In Zeowine treatment, sugars are lower, while acidity, pH and berry weight do not vary from control. Statistical differences are also noted in the concentrations of anthoclyanins and polyphenols. Results suggest a positive impact of Zeowine treatment on physiology and quality characteristics in V.vinifera.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Eleonora Cataldo, Linda Salvi, Giovann Battista Mattii

Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50019 Sesto Fiorentino (FI), Italy

Contact the author

Keywords

ecophysiology, Zeowine, zeolite, water potential, compost

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

NMR approach for monitoring the photo-degradation of riboflavin and methionine

The light exposure of white wine is responsible for several reactions leading to changes on colour, flavours and, consequently, affecting the sensory profile.

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]).

Dimethyl sulfide: a compound of interest from grape to wine glass

The overall quality of fine wines is linked to the development of “bouquet” during wine bottle ageing1. Several chemical reactions, occurring in atmosphere protected from oxygen, are favourable to the formation and preservation of sulphur compounds such as dimethyl sulfide (DMS). DMS accumulate in wines thanks to hydrolysis of its precursors (DMSp) mainly constituted by S-

Dynamic agrivoltaics, climate protection for grapevine driven by artificial intelligence

The year-on-year rise in temperatures and the increase in extreme weather events due to climate change are already having an impact on agriculture. Among the perennial fruit species, grapevine is already negatively impacted by these events through an acceleration of its phenology, more damage from late frosts or through an increase in the sugar level of the berries (and therefore the alcoholic degree of the wine) and a decrease of acidity, impacting the wine quality. Sun’Agri, in partnership with INRAE, Chambre d’agriculture du Vaucluse, Chambre d’agriculture des Pyrénées-Orientales and IFV, developed a protection system based on dynamic agrivoltaics to protect grapevine. It consists of photovoltaic solar panels positioned above the crop, high enough not to impede the passage of agricultural machinery, and tiltable from +/- 90° to adjust the level of shading on the vineyard. These smart louvers, driven by artificial intelligence (physical models & plant growth models), are steered according to the plant’s needs and provide real climate protection.

ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

Climate changes are impacting viticultural regions throughout the world with temperature increases being most prevalent.1 These changes will not only impact the regions capable of growing grapes, but also
the grapes that can be grown.2 As temperatures rise the growing degree days increase and with it the sugar accumulation within the berries and subsequent alcohol levels in wine. Consequently, viticultural
practices need to be examined to decrease the levels of sugars.