Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Study to optimize the effectiveness of copper treatments for low impact viticulture

Study to optimize the effectiveness of copper treatments for low impact viticulture

Abstract

Among all pathologies that afflict grapevine, Downy Mildew (DM) is the most important. Generally controlled using Copper (Cu), recently European Commission confirmed its usage but limiting the maximum amount to 28 Kg per hectare in 7 years (Reg. EU 2018/1981). Anyway, in the grape growing context it is difficult to reduce the use of Cu and chemicals, due to climate conditions.

The aim of this work was to determine the possibility to reduce Cu using and evaluating the variation of Cu cladding on grapevine leaves and grapes, in relation to climatic conditions. The efficacy level of the Cu protection given to DM and the correlation among them was also assessed. 

Five organic vineyards located in north-eastern of Italy were selected as experimental sites. Leaves and grapes were sampled during vegetative season and analysed for determining the quantity of elemental Cu by the use of ICP AES. Spreading of DM in vineyards was evaluated and climate data (rainfall, temperature and leaf wetness) measured. The correlation between DM, climate and Cu quantity on leaves and grapes was determined. First results indicate that the mean level of Cu applied by farmers (range: 3.77 to 8.88 µg/cm2 of Cu on leaves) during vegetative season is not enough to have an optimal protection against DM (diffusion on grapes and leaves: 40 to 50%). Thus, Cu treatments have to be pondered on the basis of meteorological data and previous infection of DM, so that it will be possible to determine the right quantity of Cu to be applied in correlation with DM presence and weather. 

Data will be correlated with image analysis, in order to quickly study the best conditions for Cu application directly on field, to reduce inputs in plant defence and to guarantee a quality and sustainable production.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Giovanni Mian1*, Piergiorgio Comuzzo1, Lucilla Iacumin1, Roberto Zanzotti2, Emilio Celotti1

1 Department of AgriFood, Environmental and Animal Sciences, via Sondrio 2/A, 33100 Udine (Italy).
2 Technology Transfer Centre; Fondazione Edmund Mach; San Michele all ‘Adige (TN) Italy.

Contact the author

Keywords

Vineyard management, Downy Mildew; Treatments optimization, Copper

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Wine odors: chemicals, physicochemical and perceptive processes involved in their perception

The odors of wines are diverse, complex and dynamic and much research has been devoted to the understanding of their chemical bases. However, while the “basic” chemical part of the problem, namely the identity of the chemicals responsible for the different odor nuances, was satisfactorily solved years ago, there are some relevant questions precluding a clear understanding. These questions are related to the physicochemical interactions determining the effective volatilities of the odorants and, particularly, to the perceptual interactions between different odor molecules affecting in different ways to the final sensory outputs.

Discrimination of white wines by Raman spectroscopy coupled with chemometric methods

France is the largest exporter of wine in the world. The export turnover is estimated at 8.7 billion euros in 2017 for 13 million hectoliters sold. This lucrative business pushes scammers to increase the value of some low-end wines by cheating on their appellations, quality or even their origins. These facts lead to losing 1.3 billion euros each year to the European Union’s wine and spirits companies.

Grape phylloxera leaf-feeding populations in commercial vineyards – a new biotype ?

Grape Phylloxera (Daktulosphaira vitifoliae Fitch) ordinarily has great difficulty establishing leaf galls on the European Grapevine (VitisviniferaL.). Yet populations of leaf-feeding Phylloxera are increasingly being observed throughout commercial vineyards world-wide. Effective plant protection strategies including quarantine actions are currently missing to fight, grape phylloxera populations in affected vineyards and combat linked negative effects on vines and yield. Contrary to the otherwise mandatory continuous infestation pressure from externally established populations (e.g. from populations developed on rootstock foliage or other interspecific hybrids, these leaf-feeding populations seem to establish themselves annually.

High throughput winter pruning weight estimation based on wood volume evaluation 

There is currently a real need to improve and speed-up phenotyping in experimental set-ups to increase the number of modalities studied. Accurate information acquisition on plant status with high-throughput capacity is the main appeal of on-board systems.
A proximal sensing camera for a proxy of winter pruning weight was tested. We estimated the shoot volume of the vine by image analysis using algorithms that integrate the local shoot section area estimate along the shoot skeleton obtained by a morphological distance transform.
The study was carried out on the GreffAdapt experimental vineyard in Guyot simple training and a canopy management using vertical trellising. The planting density is 6250 vines/ha with a row spacing of 1.6×1m. Five scions grafted onto 55 rootstocks are present and the combination rootstock×scion is different every five plants.

Dialing in grapevine water stress indicators to better reflect holistic stress responses

Current remote sensing strategies rely heavily on reflectance data and energy balance modelling using thermal imagery to estimate crop water use and stress. These approaches show great promise for driving precision management decisions, but still require work to better understand how detected changes relate to meaningful physiological changes. Under water stress, grapevines exhibit a range of responses involving both biological and physical changes within leaves and canopies.