Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Study to optimize the effectiveness of copper treatments for low impact viticulture

Study to optimize the effectiveness of copper treatments for low impact viticulture

Abstract

Among all pathologies that afflict grapevine, Downy Mildew (DM) is the most important. Generally controlled using Copper (Cu), recently European Commission confirmed its usage but limiting the maximum amount to 28 Kg per hectare in 7 years (Reg. EU 2018/1981). Anyway, in the grape growing context it is difficult to reduce the use of Cu and chemicals, due to climate conditions.

The aim of this work was to determine the possibility to reduce Cu using and evaluating the variation of Cu cladding on grapevine leaves and grapes, in relation to climatic conditions. The efficacy level of the Cu protection given to DM and the correlation among them was also assessed. 

Five organic vineyards located in north-eastern of Italy were selected as experimental sites. Leaves and grapes were sampled during vegetative season and analysed for determining the quantity of elemental Cu by the use of ICP AES. Spreading of DM in vineyards was evaluated and climate data (rainfall, temperature and leaf wetness) measured. The correlation between DM, climate and Cu quantity on leaves and grapes was determined. First results indicate that the mean level of Cu applied by farmers (range: 3.77 to 8.88 µg/cm2 of Cu on leaves) during vegetative season is not enough to have an optimal protection against DM (diffusion on grapes and leaves: 40 to 50%). Thus, Cu treatments have to be pondered on the basis of meteorological data and previous infection of DM, so that it will be possible to determine the right quantity of Cu to be applied in correlation with DM presence and weather. 

Data will be correlated with image analysis, in order to quickly study the best conditions for Cu application directly on field, to reduce inputs in plant defence and to guarantee a quality and sustainable production.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Giovanni Mian1*, Piergiorgio Comuzzo1, Lucilla Iacumin1, Roberto Zanzotti2, Emilio Celotti1

1 Department of AgriFood, Environmental and Animal Sciences, via Sondrio 2/A, 33100 Udine (Italy).
2 Technology Transfer Centre; Fondazione Edmund Mach; San Michele all ‘Adige (TN) Italy.

Contact the author

Keywords

Vineyard management, Downy Mildew; Treatments optimization, Copper

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Non Saccharomyces wine yeasts: emerging trends and challenges in winemaking

In the past, the contribution of non-Saccharomyces yeasts in winemaking has always been considered negative for their limited enological attitude if compared with Saccharomyces cerevisiae. In recent decades there has been a reevaluation of the role of non-Saccharomyces wine yeasts especially when used in combination and in support with S. cerevisiae (mixed fermentation). In this regard, selected non-Saccharomyces yeasts could be profitable used to give distinctive features, to enhance flavor and aroma complexity and to reduce the ethanol content of wines. Further emerging trends in the use of these yeasts are related to their role as bioprotectants and producers of health promoters compounds.

HOLISTIC APPROXIMATION OF THE INFLUENCE OF SACCHAROMYCES STRAINS ON WINE AROMA PRECURSORS

Wine varietal aroma is the result of a mixture of compounds formed or liberated from specific grape-aroma precursors. Their liberation/formation from their specific precursors can occur spontaneously by acid catalyzed rearrangements or hydrolysis or by the action of the yeast enzymatic activities. The influence of yeast during fermentation on the production of these volatile compounds has been widely studied however, the effect of this influence during aging is not fully understood. In order to evaluate these processes several indirect strategies have been used to study aroma precursors although they are not useful to understand the chemistry of the process.

Gestión de la mitigación por las empresas vitivinícolas: combinar sostenibilidad y rentabilidad

The transition to a decarbonized economy requires companies to adopt mitigation measures. The wine sector is one of the most affected by climate change and, therefore, interested in its mitigation. The question is how this process develops. To address this, we build on a previous study [1], which identified different types of Spanish wineries based on their sustainability approach.

Monitoring water deficit in vineyards by means of Red and Infrared measurements

Vineyard water availability is one of the most important variables both in plant’s production and wine quality, once it regulates several processes, among which the stomata activity. To avoid water deficit, wine producers introduced artificial irrigation in their vineyard, using a semi-empirical process to calculate water amount.

Haplotype-resolved genome assemblies of Chasselas and Ugni Blanc

Haplotype-resolved genome assemblies were produced for Chasselas and Ugni Blanc, two heterozygous real-field genetic pool Vitis vinifera cultivars by combining high-fidelity long-read sequencing (HiFi) and high‐throughput chromosome conformation capture (Hi-C). The telomere-to-telomere full coverage of the chromosomes allowed us to assemble separately the two haplo-genomes of both cultivars and revealed structural variations between the two haplotypes of a given cultivar.