Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Study to optimize the effectiveness of copper treatments for low impact viticulture

Study to optimize the effectiveness of copper treatments for low impact viticulture

Abstract

Among all pathologies that afflict grapevine, Downy Mildew (DM) is the most important. Generally controlled using Copper (Cu), recently European Commission confirmed its usage but limiting the maximum amount to 28 Kg per hectare in 7 years (Reg. EU 2018/1981). Anyway, in the grape growing context it is difficult to reduce the use of Cu and chemicals, due to climate conditions.

The aim of this work was to determine the possibility to reduce Cu using and evaluating the variation of Cu cladding on grapevine leaves and grapes, in relation to climatic conditions. The efficacy level of the Cu protection given to DM and the correlation among them was also assessed. 

Five organic vineyards located in north-eastern of Italy were selected as experimental sites. Leaves and grapes were sampled during vegetative season and analysed for determining the quantity of elemental Cu by the use of ICP AES. Spreading of DM in vineyards was evaluated and climate data (rainfall, temperature and leaf wetness) measured. The correlation between DM, climate and Cu quantity on leaves and grapes was determined. First results indicate that the mean level of Cu applied by farmers (range: 3.77 to 8.88 µg/cm2 of Cu on leaves) during vegetative season is not enough to have an optimal protection against DM (diffusion on grapes and leaves: 40 to 50%). Thus, Cu treatments have to be pondered on the basis of meteorological data and previous infection of DM, so that it will be possible to determine the right quantity of Cu to be applied in correlation with DM presence and weather. 

Data will be correlated with image analysis, in order to quickly study the best conditions for Cu application directly on field, to reduce inputs in plant defence and to guarantee a quality and sustainable production.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Giovanni Mian1*, Piergiorgio Comuzzo1, Lucilla Iacumin1, Roberto Zanzotti2, Emilio Celotti1

1 Department of AgriFood, Environmental and Animal Sciences, via Sondrio 2/A, 33100 Udine (Italy).
2 Technology Transfer Centre; Fondazione Edmund Mach; San Michele all ‘Adige (TN) Italy.

Contact the author

Keywords

Vineyard management, Downy Mildew; Treatments optimization, Copper

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Water relations, growth and yield of grapevines in Portugal’s Douro wine region

The hot and dry climate of the Demarcated Region of Douro (DRD), Portugal, particularly during the summer, induces soil water deficits that influence the growth and development of grapevines.

A global and regional study on winegrowers’ perceptions and adaptations to climate change

Aim: The aim of this study was to explore the current and future state of the wine sector in the context of climate change, where the goal was to obtain greater understanding on winegrowers’ perceptions and adaptations to a changing climate and its associated impacts. The study sought to provide both a global and regional perspective on these issues.

Heat waves and drought stress impact grapevine growth and physiology

Recurring heat and drought episodes during the growing season can produce adverse impacts on grape production in many wine regions around the world.

Data mining approaches for time series data analysis in viticulture. Potential of the bliss (Bayesian functional linear regression with sparse step functions) method to identify temperature effects on yield potential

Context and purpose of the study – Vine development, and hence management, depends on dynamic factors (climate, soil moisture, cultural practices etc.) whose impact can vary depending upon their temporal modalities.

Validating a portable ad-hoc fluorescence spectrometer for monitoring phenolic compounds during wine fermentation

Phenolic compounds are fundamental to wine quality, influencing its colour, mouthfeel, stability, and ageing
potential [1]. Their extraction and evolution during fermentation plays a crucial role in determining the final sensory
attributes and requires careful monitoring to guide winemaking decisions.