Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 X-ray tomography: a promising tool to assess the selection of good quality grafted vines

X-ray tomography: a promising tool to assess the selection of good quality grafted vines

Abstract

The production of grated vines is a complex process from grafting to final sorting in nurseries. To reach the market, grafted grapevines must meet three criteria by law in France: resistance to a manual graft union test (named thumb test), a minimum number of three roots and a woody shoot of at least 2 cm long. The thumb test is in essence unmeasurable in view of its manual and subjective execution and does not allow to evaluate the internal quality of the junctions. The development of tools and medical imaging methods may help to assess the internal quality of the graft union.

Commonly used in the medical field to identify some pathologies, X-ray tomography is also used in other fields including plant biology because of its ability to image structures in depth. Previous work on vines has shown its interest to distinguish the pith, the phloem, the xylem vessels and the necrotic tissues. We decided to investigate its ability to identify possible internal criteria relevant to the selection of good quality grafted vines prior to marketing. 

We therefore developed a specific methodology in terms of scanning parameters, 3D reconstruction and images analysis able to be used onto many plants. It was then applied onto 110 vines, Omega-grafted, just before being sorted. Different internal anatomical and functional criteria were measured in the rootstock, the scion and the graft area. Two criteria (“Quantity of xylem produced after grafting” and “Air and necrosis volume in the grafting area”) appeared interesting because they present statically different values on the batches that pass or not the sorting process. 

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Anne-Sophie Spilmont*, Camille Carrere, Yosra Hmedi and Guillaume Mathieu

Institut Français de la Vigne et du vin (IFV), Montpellier, France.

Contact the author

Keywords

grafting, 3D imaging, X-ray Tomography, nursery, graft quality

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Stomatal restrictions to photosynthesis in grapevine cultivars grown in a semiarid environment

Diurnal changes in the leaves of field-grown grapevine (Vitis vinifera L.) cultivars Syrah and Tempranillo were followed over summer 2009 with respect to gas exchanges. Net photosynthetic rate (AN) of both cultivars rapidly increased in the morning, decreasing slowly until the late afternoon, when reached the lowest values.

THE IMPACT OF NON-SACCHAROMYCES YEASTS ON THE WHITE WINE QUALITY

Selected strains of non-Saccharomyces yeasts showed a positive effect on sensory characteristics and aromatic complexity of wine. A sequential microbial culture of non-Saccharomyces and S. cerevisiae species is usually inoculated due to poorer fermentability of non-Saccharomyces species. The aim of the study was to investigate the role of non-Saccharomyces yeasts in the production of white wines. We evaluated how individual combinations of sequential inoculations of non-Saccharomyces and S. cerevisiae species affect the aromatic compounds (volatile thiols and esters) and sensory characteristics of the wines.

Towards stopping pesticides: survey identification of on-farm solutions

The winegrowing sector consumes a lot of pesticides. Changes in vineyard are necessary in order to reduce or even stop using pesticides, and thus limit their harmful impacts on health and on environment. To answer these issues, the VITAE project (2021-2026) aims at designing pesticide free grapevine systems in France. For that, we take an interest in the vineyards using solutions to strongly reduce chemicals but also biopesticides. We assume that such vineyards exist and that they are implementing solutions that could inspire the design of free- pesticide system.

A blueprint for managing vine physiological balance at different spatial and temporal scales in Champagne

In Champagne, the vine adaptation to different climatic and technical changes during these last 20 years can be seen through physiological balance disruptions. These disruptions emphasize the general grapevine decline. Since the 2000s, among other nitrogen stress indicators, the must nitrogen has been decreasing. The combination of restricted mineral fertilizers and herbicide use, the growing variability of spring rainfall, the increasing thermal stress as well as the soil type heterogeneity are only a few underlying factors that trigger loss of physiological balance in the vineyards. It is important to weigh and quantify the impact of these factors on the vine. In order to do so, the Comité Champagne uses two key-tools: networking and modelization. The use of quantitative and harmonized ecophysiological indicators is necessary, especially in large spatial scales such as the Champagne appellation. A working group with different professional structures of Champagne has been launched by the Comité Champagne in order to create a common ecophysiology protocol and thus monitor the vine physiology, yearly, around 100 plots, with various cultural practices and types of soil. The use of crop modelling to follow the vine physiological balance within different pedoclimatic conditions enables to understand the present balance but also predict the possible disruptions to come in future climatic scenarios. The physiological references created each year through the working group, benefit the calibration of the STICS model used in Champagne. In return, the model delivers ecophysiology indicators, on a daily scale and can be used on very different types of soils. This study will present the bottom-up method used to give accurate information on the impacts of soil, climate and cultural practices on vine physiology.

Are all red wines equals regarding their vulnerability to Brettanomyces bruxellensis ?

Odours deemed harmful by the consumer and described as “stable”, “horse sweat” or “burnt plastic” can be found in wines. The responsible molecules are volatile phenols, produced by a spoilage yeast: brettanomyces bruxellensis. This species is particularly well adapted to the wine environment and can resists many stresses such as a high alcohol level, a low ph or high levels of SO2, more or less efficiently depending on the strain considered.