Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Obtaining new varieties derived from Monastrell for the preparation of low alcoholic wines

Obtaining new varieties derived from Monastrell for the preparation of low alcoholic wines

Abstract

The main challenge faced by viticulture is to improve the quality of the wines, adapting them to the new consumer demands that demand wines with lower alcohol content and greater freshness. In the last 30 years, a clear modification has been observed in the composition of the grape due to climate change, showing a higher sugar content due to an excess of maturity, giving rise to wines with a higher alcohol content, less organic acids, a higher pH high, and a lower anthocyanin content and, therefore, lower color (van Leeuwen and Destrac-Irvine, 2017).

There are different strategies to achieve wines with a lower alcohol content, one of them would be to obtain new varieties that can adapt to harsher growing conditions than the current ones and that are capable of producing quality grapes and wines. In 1997, a program of crossings directed from the Monastrell variety began at IMIDA. At present, a new line is being started in which the selection of hybrids that accumulate few sugars in the pulp and therefore suitable for the production of wines with a low alcohol content has been carried out.

In 2017, 6 red hybrids of “low alcohol content” were selected from crosses between Monastrell, Syrah and Cabernet Sauvignon, of which 20 strains of each were planted. This year for the first time they have entered production and have been able to be elaborated. The grapes were harvested on August 25 with a ºBrix between 21 and 23, and the CI of the wines obtained at the end of alcoholic fermentation is between 40 and 62 color points. The results, although still preliminary, may be very promising for the future of viticulture.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Gil-Muñoz, R.*, Moreno-Olivares, J.D., Gimenez-Bañón, M.J., Paladines-Quezada, D.F., Martinez-Gómez, J.C., Cebrián-Pérez, A., Fernández-Fernández, J.I.           

Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario; C/ Mayor s/n La Alberca (Murcia) Spain

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Identifying best parameters to characterize genotypes capability of retaining adequate malic acid at harvest and in final wines

Under current climate change pressures, obtaining grapes with adequate acidity at harvest is one of the main challenges for growers, especially if the goal is producing sparkling wines. This issue arises from two main occurrences: i) higher temperatures enhance degradation of malic acid; ii) grape maturity may occur under suboptimal climatic conditions due to an advanced phenology.

Dialing in grapevine water stress indicators to better reflect holistic stress responses

Current remote sensing strategies rely heavily on reflectance data and energy balance modelling using thermal imagery to estimate crop water use and stress. These approaches show great promise for driving precision management decisions, but still require work to better understand how detected changes relate to meaningful physiological changes. Under water stress, grapevines exhibit a range of responses involving both biological and physical changes within leaves and canopies.

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins.

Hyperspectral imaging for precision viticulture

Precision viticulture aims to optimize vineyard management by monitoring and responding to variability within vine plots. this work presents a comprehensive study on the application of hyperspectral imaging (hsi) technology for monitoring purposes in precision viticulture. authors explore the deployment of hsi sensors on various platforms including laboratory settings, terrestrial vehicles, and unmanned aerial vehicles, facilitating the collection of high-resolution data across extensive vineyard areas.

Leaf removal to regulate fruit ripening in Cabernet-Sauvignon

Aim: Under the effects of climate change it is becoming increasingly common to observe excessively fast sugar accumulation while anthocyanin and flavour development are lagging behind. Understanding the impact of different leaf removal techniques on ripening will provide vineyard managers with a canopy management strategy suitable for