Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Obtaining new varieties derived from Monastrell for the preparation of low alcoholic wines

Obtaining new varieties derived from Monastrell for the preparation of low alcoholic wines

Abstract

The main challenge faced by viticulture is to improve the quality of the wines, adapting them to the new consumer demands that demand wines with lower alcohol content and greater freshness. In the last 30 years, a clear modification has been observed in the composition of the grape due to climate change, showing a higher sugar content due to an excess of maturity, giving rise to wines with a higher alcohol content, less organic acids, a higher pH high, and a lower anthocyanin content and, therefore, lower color (van Leeuwen and Destrac-Irvine, 2017).

There are different strategies to achieve wines with a lower alcohol content, one of them would be to obtain new varieties that can adapt to harsher growing conditions than the current ones and that are capable of producing quality grapes and wines. In 1997, a program of crossings directed from the Monastrell variety began at IMIDA. At present, a new line is being started in which the selection of hybrids that accumulate few sugars in the pulp and therefore suitable for the production of wines with a low alcohol content has been carried out.

In 2017, 6 red hybrids of “low alcohol content” were selected from crosses between Monastrell, Syrah and Cabernet Sauvignon, of which 20 strains of each were planted. This year for the first time they have entered production and have been able to be elaborated. The grapes were harvested on August 25 with a ºBrix between 21 and 23, and the CI of the wines obtained at the end of alcoholic fermentation is between 40 and 62 color points. The results, although still preliminary, may be very promising for the future of viticulture.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Gil-Muñoz, R.*, Moreno-Olivares, J.D., Gimenez-Bañón, M.J., Paladines-Quezada, D.F., Martinez-Gómez, J.C., Cebrián-Pérez, A., Fernández-Fernández, J.I.           

Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario; C/ Mayor s/n La Alberca (Murcia) Spain

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Evolution of flavonols during Merlot winemaking processes

The phenomenon of quercetin precipitation in wine (flanovol haze), has been manifested for many years in several wine-producing regions

Soil, vine, climate change – what is observed – what is expected

To evaluate the current and future impact of climate change on Viticulture requires an integrated view on a complex interacting system within the soil-plant-atmospheric continuum under continuous change. Aside of the globally observed increase in temperature in basically all viticulture regions for at least four decades, we observe several clear trends at the regional level in the ratio of precipitation to potential evapotranspiration. Additionally the recently published 6th assessment report of the IPCC (The physical science basis) shows case-dependent further expected shifts in climate patterns which will have substantial impacts on the way we will conduct viticulture in the decades to come.
Looking beyond climate developments, we observe rising temperatures in the upper soil layers which will have an impact on the distribution of microbial populations, the decay rate of organic matter or the storage capacity for carbon, thus affecting the emission of greenhouse gases (GHGs) and the viscosity of water in the soil-plant pathway, altering the transport of water. If the upper soil layers dry out faster due to less rainfall and/or increased evapotranspiration driven by higher temperatures, the spectral reflection properties of bare soil change and the transport of latent heat into the fruiting zone is increased putting a higher temperature load on the fruit. Interactions between micro-organisms in the rhizosphere and the grapevine root system are poorly understood but respond to environmental factors (such as increased soil temperatures) and the plant material (rootstock for instance), respectively the cultivation system (for example bio-organic versus conventional). This adds to an extremely complex system to manage in terms of increased resilience, adaptation to and even mitigation of climate change. Nevertheless, taken as a whole, effects on the individual expressions of wines with a given origin, seem highly likely to become more apparent.

Sardinia terroir and Cannonau: a zoning approach to discover an ancient tradition

Cannonau variety is historically grown in a large Sardinia area (Jerzu district) and the vineyards are planted both in the plane and in the sloped hills reaching also 650 m of altitude a.s.l. Thus, in order to discover how climate, soil diversity and growing traditions could account for differences in grape and wine quality, this trial was carried out.

Characterising the chemical typicality of regional Cabernet Sauvignon wines

Aim: To define the uniqueness of Australian Cabernet Sauvignon wines by evaluation of the chemical composition (volatile aroma and non-volatile constituents) that may drive regional typicity, and to correlate this with comprehensive sensory analysis data to identify the most important compounds driving relevant sensory attributes.

Detoxification capacities of heavy metals and pesticides by yeasts 

Winegrowing is still characterized by the extensive use of chemical fertilizers and plant protection products, despite strong recommendations to limit these practices. A part of these xenobiotics and metals are then found in grape juice and wine, causing a major health concern, as well as negatively affecting the fermentation process. In recent years, there has been renewed interest in non-Saccharomyces yeasts. These species have a wide phenotypic diversity, which would be exploited to broaden the aromatic palette of wines.