Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Use of microorganisms in the disinfection/protection of organic rooted-cuttings from wood pathogens

Use of microorganisms in the disinfection/protection of organic rooted-cuttings from wood pathogens

Abstract

One of the major problems affecting the viticulture sector is the quantity of plant protection products (especially copper) used to control the main foliar diseases of the vine. The Life Green Grapes project enter in the production context with the aim of reducing the use of fungicides throughout the production cycle, starting from mother plants protection in the field up to the production of wine and table grapes.

The process goes through the nursery sector where it aims to improve both the phytosanitary state of the rooted-cuttings, reducing the endophytic presence of potentially pathogenic wood fungi, and the qualitative aspect of the nursery material, through the application of a consortium of microorganisms that increase the microbial biodiversity associated with the rhizosphere.

At the “Vivaio Moroni”, partner of the project, the propagation material was treated following three different application protocols: 1) Corporate Bio; 2) Trichoderma+Mycorrhiza; 3) Trichoderma.

To evaluate the most suitable time for the application of the products, treatments were carried out at different stages of the production process: 1) before storage in the fridge at 4⁰C; 2) before delivery to the vine farm; 3) just before planting.

The analyzes carried out showed a greater root mass in the proximal area in all the treatments with Trichoderma+mycorrhiza and allowed to quantify the presence of the applied microorganisms; they showed the effects on the vegetative state (statistically significant differences between the control and the treatments); and furthermore highlighted the tendency to reduce wood pathogens in both treatments (Trichoderma only and with Trichoderma+Mycorrhizae).

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

G. Carella¹*, F. Burroni², A. Ciofini³, L. Ghelardini¹, R. Perria³, W.A. Petrucci³, P. Storchi³ and L. Mugnai¹

¹ Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 28, I-50144, Florence, Italy
² Studio Associato Agroniminvigna, Via de’ Buondelmonti 62, 50125 Firenze, Italy
³Council for Agricultural Research and Economics (CREA), Research centre for Viticulture and Enology, Viale Santa Margherita 80, 52100 Arezzo, Italy

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Effects of urea and nano-urea foliar treatments on the aromatic profile of Monastrell wines

Foliar application of urea has proven to be an effective method for increasing the amino acid content in grapes, especially when the vineyard has additional nitrogen needs. These treatments can prevent problems of stucking fermentation during winemaking.

Prediction of sauvignon blanc quality gradings with static headspace−gas chromatography−ion mobility spectrometry (SHS−GC−IMS) and machine learning

The main goal of the current study is the development of a cost-effective and easy-to-use method suitable for use in the laboratory of commercial wineries to analyze wine aroma. Additionally, this study attempted to establish a prediction model for wine quality gradings based on their aroma, which could reveal the important aroma compounds that correlate well with different grades of perceived quality METHODS: Parameters of the SHS−GC−IMS instrument were first optimized to acquire the most desirable chromatographic resolution and signal intensities. Method stability was then exhibited by repeatability and reproducibility. Subsequently, compound identification was conducted. After method development, a total of 143 end-ferment wine samples of three different quality gradings from vintage 2020 were analyzed with the SHS−GC−IMS instrument. Six machine learning methods were employed to process the results and construct a quality prediction model. Techniques that aim to explain the model to extract useful insights were also applied.

EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

Global climate change is exerting a notable influence on viticulture sector and grape composition. The increase in temperature and the changes in rainfall pattern are causing a gap between phenolic and technological grape maturities [1]. As a result, the composition of grapes at harvest time and, consequently, that of wines are being affected, especially with regards to phenolic composition. Hence, wine quality is decreasing due to changes in the organoleptic properties, such as color and astringency, making necessary to implement new adaptive technologies in wineries to modulate these properties in order to improve wine quality.

Chemical markers in wine related to low levels of yeast available nitrogen in the grape

Nitrogen is an important nutrient of yeast and its low content in grape must is a major cause for sluggish fermentations. To prevent problems during fermentation, a supplementation of the must with ammonium salts or more complex nitrogen mixtures is practiced in the cellar. However this correction seems to improve only partially the quality of wine [1]. In fact, yeast is using nitrogen in many of its metabolic pathways and depending of the sort of the nitrogen source (ammonium or amino acids) it produces different flavor active compounds. A limitation in amino acids can lead to a change in the metabolic pathways of yeast and consequently alter wine quality.

Simulating the impact of climate change on viticultural systems in various European vineyards

Aim: Global climate change affects regional climates and hold implications for wine growing regions worldwide (Jones, 2007, 2015; van Leeuwen and Darriet, 2016). The prospect of 21st century climate change consequently is one of the major challenges facing the wine industry (Keller, 2010).