Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Use of microorganisms in the disinfection/protection of organic rooted-cuttings from wood pathogens

Use of microorganisms in the disinfection/protection of organic rooted-cuttings from wood pathogens

Abstract

One of the major problems affecting the viticulture sector is the quantity of plant protection products (especially copper) used to control the main foliar diseases of the vine. The Life Green Grapes project enter in the production context with the aim of reducing the use of fungicides throughout the production cycle, starting from mother plants protection in the field up to the production of wine and table grapes.

The process goes through the nursery sector where it aims to improve both the phytosanitary state of the rooted-cuttings, reducing the endophytic presence of potentially pathogenic wood fungi, and the qualitative aspect of the nursery material, through the application of a consortium of microorganisms that increase the microbial biodiversity associated with the rhizosphere.

At the “Vivaio Moroni”, partner of the project, the propagation material was treated following three different application protocols: 1) Corporate Bio; 2) Trichoderma+Mycorrhiza; 3) Trichoderma.

To evaluate the most suitable time for the application of the products, treatments were carried out at different stages of the production process: 1) before storage in the fridge at 4⁰C; 2) before delivery to the vine farm; 3) just before planting.

The analyzes carried out showed a greater root mass in the proximal area in all the treatments with Trichoderma+mycorrhiza and allowed to quantify the presence of the applied microorganisms; they showed the effects on the vegetative state (statistically significant differences between the control and the treatments); and furthermore highlighted the tendency to reduce wood pathogens in both treatments (Trichoderma only and with Trichoderma+Mycorrhizae).

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

G. Carella¹*, F. Burroni², A. Ciofini³, L. Ghelardini¹, R. Perria³, W.A. Petrucci³, P. Storchi³ and L. Mugnai¹

¹ Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 28, I-50144, Florence, Italy
² Studio Associato Agroniminvigna, Via de’ Buondelmonti 62, 50125 Firenze, Italy
³Council for Agricultural Research and Economics (CREA), Research centre for Viticulture and Enology, Viale Santa Margherita 80, 52100 Arezzo, Italy

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

New genomic techniques, plant variety rights and wine law

The paper discusses potential implications of New Genomic Technologies (NGTs) on European Plant Variety and Wine Law.

Soil survey and chemical parameters evaluation in viticultural zoning

The most recent methodological developments in soil survey and land evaluation, that can be taken as reference in the viticultural field, go over usage of the GIS and database. These informatic tools, which begin to be widely utilised, consent to realise evaluations at different geographic scale and with different data quality and quantity in entrance.

Exploring the plasticity of the grapevine drought physiology

Grapevine response to water deficit has been extensively studied. Nevertheless, debate still exists regarding some physiology adoption under drought

Modélisation du régime thermique des sols de vignoble du Val de Loire : relations avec des variables utilisables pour la caractérisation des terroirs

Temperature has a decisive influence on the growth and development of plants (Carbonneau et al., 1992). In particular, in the case of the vine, the temperature is an omnipresent variable in the climatic indices (Huglin, 1986). For reasons of convenience, these indices use the temperature of the air measured under shelter in a meteorological station, making the implicit hypothesis of a concordance between this temperature and that of the sites of perception of the thermal stimulus by the plant. However, development may be more dependent on soil temperature than air temperature (Kliewer, 1975). Morlat (1989) thus verified that the variability in the precocity of the vine, positively correlated with the quality of the harvest and of the wine in the Loire Valley, was mainly explained by differences in temperature of the root zones.

Grape overripening as an innovation strategy in response to climate change

Today’s viticulture is facing a new climatic scenario with temperature increases and rainfall deficits, generated by the effect of climate change. As a result of these new conditions, there are earlier harvests, increased plant water stress and higher disease risk in wetter wine-growing regions.