Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Use of microorganisms in the disinfection/protection of organic rooted-cuttings from wood pathogens

Use of microorganisms in the disinfection/protection of organic rooted-cuttings from wood pathogens

Abstract

One of the major problems affecting the viticulture sector is the quantity of plant protection products (especially copper) used to control the main foliar diseases of the vine. The Life Green Grapes project enter in the production context with the aim of reducing the use of fungicides throughout the production cycle, starting from mother plants protection in the field up to the production of wine and table grapes.

The process goes through the nursery sector where it aims to improve both the phytosanitary state of the rooted-cuttings, reducing the endophytic presence of potentially pathogenic wood fungi, and the qualitative aspect of the nursery material, through the application of a consortium of microorganisms that increase the microbial biodiversity associated with the rhizosphere.

At the “Vivaio Moroni”, partner of the project, the propagation material was treated following three different application protocols: 1) Corporate Bio; 2) Trichoderma+Mycorrhiza; 3) Trichoderma.

To evaluate the most suitable time for the application of the products, treatments were carried out at different stages of the production process: 1) before storage in the fridge at 4⁰C; 2) before delivery to the vine farm; 3) just before planting.

The analyzes carried out showed a greater root mass in the proximal area in all the treatments with Trichoderma+mycorrhiza and allowed to quantify the presence of the applied microorganisms; they showed the effects on the vegetative state (statistically significant differences between the control and the treatments); and furthermore highlighted the tendency to reduce wood pathogens in both treatments (Trichoderma only and with Trichoderma+Mycorrhizae).

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

G. Carella¹*, F. Burroni², A. Ciofini³, L. Ghelardini¹, R. Perria³, W.A. Petrucci³, P. Storchi³ and L. Mugnai¹

¹ Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 28, I-50144, Florence, Italy
² Studio Associato Agroniminvigna, Via de’ Buondelmonti 62, 50125 Firenze, Italy
³Council for Agricultural Research and Economics (CREA), Research centre for Viticulture and Enology, Viale Santa Margherita 80, 52100 Arezzo, Italy

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Impact of organic inputs on soil biodiversity in vineyard systems. A monitoring approach during 20 years

Conventional vineyard practices have lead in many environmental disturbances as erosion, soil compaction, loss of organic matter and soil biodiversity, water contamination

Influence of cork density upon cork stopper resiliency after opening a sparkling wine bottle

After Champagne popping, the first consumer’s observation is the shape of the cork stopper. Consumers expect a “mushroom shape”. Nevertheless, we sometimes observe a “barrel” shape due to inappropriate cork’s elastic properties. The aim of this study was to follow the loss of cork stopper resiliency during 26 months according to the density (d) of the cork in contact with the wine. 1680 disks were weighed + measured and divided in 6 density classes: High (H1 d= 0,19 g/cm3 – H2 d= 0,21 g/cm3), Medium (M, not studied) and Low (L1 d= 0,13 g/cm3 – L2 d= 0,14 g/cm3). Then, 138 technical cork stoppers were produced for each of the 4 studied groups. These corks consisted of an agglomerated natural cork granule body to which two natural cork disks were glued. A total of 552 bottles of sparkling wine were closed with these corks and open after 13, 19 and 26 months to follow cork resiliencies. Wine bottles were stored horizontally; thus, the external natural cork disks were in contact to the wine. During the 26 months of the study, highly significant differences (ANOVA) were observed between the resiliencies of H-corks and those of L-corks, whatever the time studied. The diameters of the L-corks were statistically higher than those of the H-corks. No significant differences were observed between L1 and L2 corks. At the opposite, differences were noted between H1 and H2 at 19 and 26 months. This could be explained by the heterogeneity of the resiliency that was higher for H-corks than for L-corks. Finally, the corks were visually (12 judges) divided in 3 classes corresponding to high (expected mushroom shape, i.e high resiliency), medium (irregular shape of the disk in contact with the wine and/or low premature deterioration of the expected resiliency) and low qualities (barrel shape = premature deterioration of the resiliency). The corks were also divided in 3 categories corresponding to 0-33%, 34-66% and 67-100% resiliency. A strong correlation was noted between the visual and the instrumental categorizations. This study strongly evidenced 1) the importance of the cork density on the cork stopper behaviour when opening the bottle and 2) the interest of an instrumental approach reflecting the consumer’s perception.

Analysis of climatic changes in different areas of Abruzzo region (Central Italy): implications for grape growing

The dynamic evolution of some bioclimatic indices largely used to define the vocation of areas to grape growing was assessed over 43 years (1965-2007) in four sites of the Abruzzo Region (Central Italy).

Construction of a 3D vineyard model using very high resolution airborne images

In recent years there has been a growth in interest and number of research studies regarding the application of remote optical and thermal sensing by unmanned aerial vehicle (UAV) in agriculture and viticulture. Many papers report on the use of images to map or estimate the growth and water status of plants, or the heterogeneity of different parcels. Most often, NDVI or other similar indices are used.

Fermentative volatile compounds and chromatic characteristics can contribute to Italian white wines diversity

Perceived aroma plays an important role in wine quality, and it depends mainly on the volatile composition. Volatile organic compounds (VOCs) from grapes and those formed during winemaking are involved in the sensory complexity of wines. In aroma-neutral winegrape varieties, the winemaking process itself, and particularly alcoholic fermentation (AF), impacts strongly on the organoleptic characteristics of wines due to the formation of volatile alcohols, acids, and esters. In addition, phenolic compounds could contribute not only to the wine color but also to VOCs evolution during AF.