Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Use of microorganisms in the disinfection/protection of organic rooted-cuttings from wood pathogens

Use of microorganisms in the disinfection/protection of organic rooted-cuttings from wood pathogens

Abstract

One of the major problems affecting the viticulture sector is the quantity of plant protection products (especially copper) used to control the main foliar diseases of the vine. The Life Green Grapes project enter in the production context with the aim of reducing the use of fungicides throughout the production cycle, starting from mother plants protection in the field up to the production of wine and table grapes.

The process goes through the nursery sector where it aims to improve both the phytosanitary state of the rooted-cuttings, reducing the endophytic presence of potentially pathogenic wood fungi, and the qualitative aspect of the nursery material, through the application of a consortium of microorganisms that increase the microbial biodiversity associated with the rhizosphere.

At the “Vivaio Moroni”, partner of the project, the propagation material was treated following three different application protocols: 1) Corporate Bio; 2) Trichoderma+Mycorrhiza; 3) Trichoderma.

To evaluate the most suitable time for the application of the products, treatments were carried out at different stages of the production process: 1) before storage in the fridge at 4⁰C; 2) before delivery to the vine farm; 3) just before planting.

The analyzes carried out showed a greater root mass in the proximal area in all the treatments with Trichoderma+mycorrhiza and allowed to quantify the presence of the applied microorganisms; they showed the effects on the vegetative state (statistically significant differences between the control and the treatments); and furthermore highlighted the tendency to reduce wood pathogens in both treatments (Trichoderma only and with Trichoderma+Mycorrhizae).

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

G. Carella¹*, F. Burroni², A. Ciofini³, L. Ghelardini¹, R. Perria³, W.A. Petrucci³, P. Storchi³ and L. Mugnai¹

¹ Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 28, I-50144, Florence, Italy
² Studio Associato Agroniminvigna, Via de’ Buondelmonti 62, 50125 Firenze, Italy
³Council for Agricultural Research and Economics (CREA), Research centre for Viticulture and Enology, Viale Santa Margherita 80, 52100 Arezzo, Italy

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.

Development of the geographic indication vale do São Francisco for tropical wines in Brazil

Aim: Geographical Indications-GI are commonly used to protect territorial products around the world, such as cheese and wine. This qualification is useful because it improves the producer’s organization, protects and valorizes the distinct origin and quality of the product, increases recognition and notoriety, and adds value for products. Tropical wines are mainly produced in Brazil, India,

Comparison of fortified, sfursat and passito winemaking techniques for the enhancement of the oenological potential of the black grape cultivar Moscato nero d’Acqui (Vitis vinifera L.)

One of the key factors of the economical development of viticulture and wine industry in specific limited areas is the exploitation of ancient, local grape varieties. Therefore, in recent years the growing interest to rediscover minor varieties, previously cultivated, has promoted many studies. With this regard, the focus of this study was the Vitis vinifera L. cultivar Moscato nero d’Acqui, nowadays found only in old vineyards in the Acqui zone (North-West Italy). In particular, the aims of this work were: i) to investigate secondary metabolites profile of the grapes, and ii) to evaluate the attitude to the production of special wines.

Diagnosis of soil quality and evaluation of the impact of viticultural practices on soil biodiversity in a vineyard in southwestern France

Viticulture is facing two major changes – climate change and agroecological transition. In both cases, soil quality is seen as a lever to move towards a more sustainable viticulture. However, soil biological quality is little considered in the implementation of viticultural practices. Gascogn’Innov (2017-2022) is an Operational Group funded by the European Innovation Partnership for Agriculture. As such, it brings together winegrowers from the south-west of France, scientists, advisors and technicians, around a project focused on viticultural soil biological functioning and the design of technical routes more respectful toward soil heritage. To achieve this, the project aims to acquire references on the impact of viticultural practices on soil biology from a dynamic way, and to test a methodology to integrate information provided by the soil bioindicators to manage farming systems. A set of indicators of soil biological quality are evaluated in the project: microorganisms (bacteria and fungi abundance and diversity), fauna (abundance and diversity of nematodes and earthworms), physico-chemical characteristics, soil structure assessment and degradation rate of organic matter. Based on a network of 13 plots that have been subject to an initial diagnosis in 2017, several agronomical practices to restore soil fertility are experimented to redesign the cropping system (for instance plant cover, organic matter inputs, reduction of herbicides, mineral fertilizers). System redesign was made in collaboration by winegrowers and an interdisciplinary group of experts (agronomists, biologists). Several indicators are measured on vine and soil at each vintage to assess vine health and productivity. At the end of the project (2021), a final diagnosis was carried out. Gascogn’Innov allowed to create a regional database on the quality of wine-growing soils, which permitted to evaluate the effect of practices according to soil types. Especially, decreasing the intensity of tillage and increasing the duration and diversity of grass coverage tends to increase the abundance of all the organisms studied. This project confirmed the value of soil biological quality indicators to drive the sustainability of practices, but also highlighted the key-role of expertise, in both agronomy and soil biology, to help winegrowers understand and appropriate their soil quality diagnoses.

New molecular evidence of wine yeast-bacteria interaction unraveled by untargeted metabolomic profiling

Bacterial malolactic fermentation (MLF) has a considerable impact on wine quality. The yeast strain used for primary fermentation can consistently stimulate (MLF+ phenotype) or inhibit (MLF- phenotype) malolactic bacteria and the MLF process as a function of numerous winemaking practices, but the molecular evidence behind still remains a mystery. In this study, such evidence was elucidated by the direct comparison of extracellular metabolic profiles of MLF+ and MLF- yeast phenotypes. Untargeted metabolomics combining ultrahigh-resolution FT-ICR-MS analysis, powerful machine learning methods and a comprehensive wine metabolite database, discovered around 800 putative biomarkers and 2500 unknown masses involved in phenotypic distinction.