Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 How artificial intelligence (AI) is helping winegrowers to deal with adversity from climate change

How artificial intelligence (AI) is helping winegrowers to deal with adversity from climate change

Abstract

Artificial intelligence (AI) for winegrowers refers to robotics, smart sensor technology, and machine learning applied to solve climate change problems. Our research group has developed novel technology based on AI in the vineyard to monitor vineyard growth using computer vision analysis (VitiCanopy App) and grape maturity based on berry cell death to predict flavor and aroma profiles of berries and final wines. Smart sensor technology, such as low-cost electronic noses, has been developed and tested to monitor in the vineyard and the winery effects of smoke contamination and smoke taint, respectively, by analyzing in real-time samples and detecting taint levels and smoke-related compounds in berries, must and wines. AI has also been applied to big data collected by vineyards and on vertical vintage libraries of wines to develop specific models based on machine learning to predict wines’ aroma profiles based on weather and management information. Our ground-breaking developments on sensory analysis and biometrics from consumers include emotional response and physiological response, such as heart rate, blood pressure, skin temperature, and gesture changes. These parameters have been used to develop AI-based models to assess back viticultural and winemaking management throughout the grape and wine production chain. Information from this integrated AI system (smart sensor and sensory/biometrics) can be used to modify vineyard management strategies, such as canopy management and irrigation scheduling, to target specific consumer preference or wine styles uniformity. The same technology can also be applied for traceability, authentication, and counterfeiting measures using blockchain.     

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Sigfredo Fuentes1*, Eden Tongson1 and Claudia Gonzalez Viejo1

1Digital Agriculture, Food and Wine Research Group. School of Agriculture and Food. Faculty of Veterinary and Agricultural Sciences. The University of Melbourne. Royal Parade. 3010. Victoria. Australia.

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Aroma compounds involved in the fruity notes of red wines potentially adapted to climate change.

Currently, climate change represents one of the major issues for the wine sector. The increasing temperature already recorded and expected in the upcoming years reduce the vegetative cycle of the grape varieties planted in Bordeaux area, affecting the physicochemical parameters of grapes and consequently, the quality of wine. From a sensory point of view, the attenuation of the fresh fruity character in some varietals is accompanied by the accentuation of dried-fruit notes [1]. As a new adaptive and ecological strategy on global warming, some winegrowers have initiated changes in the Bordeaux blend of vine varieties using late-ripening grape varieties [2]. 

Exploring the impact of different closures on tannin evolutions by using metabolomic approach

Condensed tannins (CTs), polymers of flavan-3-ols, are a class of polyphenolic compounds that play a significant role in the organoleptic qualities of red wines, particularly influencing color, astringency and bitterness. These properties are highly dependent on size and structure of these compounds.

Phenolic composition of Tempranillo Blanco grapes changes after foliar application of urea

Our research aimed to determine the effect and efficiency of foliar application of urea on the phenolic composition of Tempranillo Blanco grapes. The field experiment was carried out in 2019 and 2020 seasons and the plot was located in D.O.Ca Rioja (North of Spain). The vineyard was Vitis vinifera L. Tempranillo Blanco and grafted on Richter-110 rootstock. The treatments were control (C), whose plants were sprayed with water and three doses of urea: plants were sprayed with urea 3 kg N/ha (U3), 6 kg N/ha (U6) and 9 kg N/ha (U9). The applications were performed in two phenological stages, pre-veraison (Pre) and veraison (Ver). Also, each of the treatments was repeated one week later. Control and treatments were performed in triplicate and arranged in a randomised block design. Grapes were harvested at optimum ripening stage. High-performance liquid chromatography was used to analyse the phenolic composition of the grapes. Finally, the results obtained from the analytical determinations – flavonols, flavanols and non-flavonoid (hydroxybenzoic acids, hydroxycinnamic acids and stilbenes) – were studied statistically by analysis of variance. The results showed that, in 2019, U6-Pre and U9-Pre treatments increased the hydroxybenzoic acid content in grapes, and also all foliar treatments applied at Pre enhanced the stilbene concentration. Moreover, U3-Ver was the only treatment that rose flavonol and stilbene contents in the Tempranillo Blanco grapes. In 2020, all treatments applied at Pre enhanced the flavonol concentration in grapes. Furthermore, U3-Pre and U9-Pre treatments increased stilbene content in grapes. Nevertheless, the hydroxybenzoic acid content was improved by U6-Ver and U9-Ver and besides, hydroxycinnamic acid concentration in grapes was increased by all treatments applied at Ver. In conclusion, the lower and highest dose of urea (U3 and U9), applied at pre-veraison, were the best treatments to improve the Tempranillo Blanco grape phenolic composition.

Variety “Rebula” (Vitis vinifera L.) determines the terroir Goriška brda “Collio” in Slovenia

A «terroir» is a group of vineyards from the same region, belonging to a specific appellation, and sharing the same type of soil, weather conditions, grapes and wine making savoir-faire, which contribute its specific personality to the wine. White wine variety «Rebula» or «Ribolla gialla» is a local and traditional variety, which is mentioned already in XIII. century like variety for tax paying and merchandise.

Learning from remote sensing data: a case study in the Trentino region 

Recent developments in satellite technology have yielded a substantial volume of data, providing a foundation for various machine learning approaches. These applications, utilizing extensive datasets, offer valuable insights into Earth’s conditions. Examples include climate change analysis, risk and damage assessment, water quality evaluation, and crop monitoring. Our study focuses on exploiting satellite thermal and multispectral imaging, and vegetation indexes, such as NDVI, in conjunction with ground truth information about soil type, land usage (forest, urban, crop cultivation), and irrigation water sources in the Trentino region in North-East of Italy.