Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 How artificial intelligence (AI) is helping winegrowers to deal with adversity from climate change

How artificial intelligence (AI) is helping winegrowers to deal with adversity from climate change

Abstract

Artificial intelligence (AI) for winegrowers refers to robotics, smart sensor technology, and machine learning applied to solve climate change problems. Our research group has developed novel technology based on AI in the vineyard to monitor vineyard growth using computer vision analysis (VitiCanopy App) and grape maturity based on berry cell death to predict flavor and aroma profiles of berries and final wines. Smart sensor technology, such as low-cost electronic noses, has been developed and tested to monitor in the vineyard and the winery effects of smoke contamination and smoke taint, respectively, by analyzing in real-time samples and detecting taint levels and smoke-related compounds in berries, must and wines. AI has also been applied to big data collected by vineyards and on vertical vintage libraries of wines to develop specific models based on machine learning to predict wines’ aroma profiles based on weather and management information. Our ground-breaking developments on sensory analysis and biometrics from consumers include emotional response and physiological response, such as heart rate, blood pressure, skin temperature, and gesture changes. These parameters have been used to develop AI-based models to assess back viticultural and winemaking management throughout the grape and wine production chain. Information from this integrated AI system (smart sensor and sensory/biometrics) can be used to modify vineyard management strategies, such as canopy management and irrigation scheduling, to target specific consumer preference or wine styles uniformity. The same technology can also be applied for traceability, authentication, and counterfeiting measures using blockchain.     

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Sigfredo Fuentes1*, Eden Tongson1 and Claudia Gonzalez Viejo1

1Digital Agriculture, Food and Wine Research Group. School of Agriculture and Food. Faculty of Veterinary and Agricultural Sciences. The University of Melbourne. Royal Parade. 3010. Victoria. Australia.

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

NEW INSIGHTS INTO THE FATE OF MARKERS INVOLVED IN FRESH MUSHROOM OFF-FLAVOURS DURING ALCOHOLIC FERMENTATION

The fresh mushroom off-flavour (FMOff) has been appearing in wines since the 2000s. Some C8 compounds such as 1-octen-3-one, 1-octen-3-ol, 1-hydroxyoctan-3-one, 3-octanol and others are involved in this specific off-flavour [1-3]. At the same time, glycosidic precursors of some FMOff compounds have been identified in musts contaminated by Crustomyces subabruptus [4], highlighting the role of aroma precursors in this specific taint. However, the fate of these volatile molecules and glycosidic fractions during fermentation is not well known.

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.

Vineyard yield estimation using image analysis: assessing bunch occlusions and its dependency on fruiting zone canopy features

Performing accurate vineyard yield estimation is of upmost importance as it provides important benefits to the whole vine and wine industry. Recently, image-analysis approaches have been explored to address this issue however this approach has as main challenge the bunch occlusion, mostly by vegetation but also by neighboring bunches. The present work aims at assessing the magnitude of bunch occlusion by neighboring bunches and to evaluate its dependency on a selection of vegetative and reproductive vine parameters assessed at fruiting zone. Forty vine segments (1 m) of two vineyard plots of the white cultivars ‘Alvarinho’ and ‘Arinto’ were assessed for vegetative and reproductive features at fruiting zone and imaged with a 2D camera.

The “green gold” @fem: assessing grapevine germplasm diversity to crossbreed the varieties of the future

Context and purpose of the study. To date over 3,000 grapevine accessions have been collected at Fondazione Edmund Mach (FEM).

Potential deacidifying role of a commercial chitosan: impact on pH, titratable acidity, and organic acids in model solutions and white wine

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps.