Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 How artificial intelligence (AI) is helping winegrowers to deal with adversity from climate change

How artificial intelligence (AI) is helping winegrowers to deal with adversity from climate change

Abstract

Artificial intelligence (AI) for winegrowers refers to robotics, smart sensor technology, and machine learning applied to solve climate change problems. Our research group has developed novel technology based on AI in the vineyard to monitor vineyard growth using computer vision analysis (VitiCanopy App) and grape maturity based on berry cell death to predict flavor and aroma profiles of berries and final wines. Smart sensor technology, such as low-cost electronic noses, has been developed and tested to monitor in the vineyard and the winery effects of smoke contamination and smoke taint, respectively, by analyzing in real-time samples and detecting taint levels and smoke-related compounds in berries, must and wines. AI has also been applied to big data collected by vineyards and on vertical vintage libraries of wines to develop specific models based on machine learning to predict wines’ aroma profiles based on weather and management information. Our ground-breaking developments on sensory analysis and biometrics from consumers include emotional response and physiological response, such as heart rate, blood pressure, skin temperature, and gesture changes. These parameters have been used to develop AI-based models to assess back viticultural and winemaking management throughout the grape and wine production chain. Information from this integrated AI system (smart sensor and sensory/biometrics) can be used to modify vineyard management strategies, such as canopy management and irrigation scheduling, to target specific consumer preference or wine styles uniformity. The same technology can also be applied for traceability, authentication, and counterfeiting measures using blockchain.     

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Sigfredo Fuentes1*, Eden Tongson1 and Claudia Gonzalez Viejo1

1Digital Agriculture, Food and Wine Research Group. School of Agriculture and Food. Faculty of Veterinary and Agricultural Sciences. The University of Melbourne. Royal Parade. 3010. Victoria. Australia.

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

The effect of soil and climate on the character of Sauvignon blanc wine

Un projet multidisciplinaire sur l’effet du sol et du climat sur la qualité du vin a débuté en Afrique du Sud il y a 5 ans. Des mesures sont effectuées sous culture sèche dans des vignes de Sauvignon Blanc dans six localités différentes, cinq dans le district de Stellenbosch et une à Durbanville.

Characterization of Cabernet Sauvignon from Maipo valley (Chile) using fluorescence measurement

Viral diseases are a significant cause of both decreased grape quality and vineyard production. Important agents include grapevine leafroll-associated virus (glravs) and grapevine rupestris stem pitting-associated virus (grspav). However, conducting phytosanitary analysis of vineyards for viruses on-site is challenging, and molecular testing is generally expensive.

To a better understanding of the impact of vine nitrogen status on volatile thiols from plot to transcriptome level

Volatile thiols contribute largely to the organoleptic characteristics and typicity of Sauvignon blanc wines. Among this family of odorous compounds, 3-sulfanylhexan-1-ol (3SH) and 4-methyl-4-sulfanylpentan-2-one (4MSP) have a major impact on wine flavor. These thiols are formed during alcoholic fermentation by the yeast from odorless and non-volatile precursors found in the berry and the must. The effect of vine nitrogen status on 3SH and 4MSP in Sauvignon blanc wine and on the glutathionylated and cysteinylated precursors of 3SH (Glut-3SH and Cys-3SH) was investigated in this study.

Retallack Viticulture EcoVineyards video

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Spatiotemporal patterns of chemical attributes in Vitis vinifera L. cv. Cabernet Sauvignon vineyards in Central California

Spatial variability of vine productivity in winegrapes is important to characterise as both yield and quality are relevant for the production of different wine styles and products. The objectives were to understand how patterns of variability of Cabernet Sauvignon fruit composition changed over time and space, how these patterns could be characterised with indirect measurements, and how spatial patterns of the variation in fruit compositional attributes can aid in improving management. Prior to the 2017 vintage, 125 data vines were distributed across each of four vineyards in the Lodi American Viticultural Area (AVA) of California. Each data vine was sampled at commercial harvest in 2017, 2018, and 2019. Yield components and fruit composition were measured at harvest for each data vine, and maps of yield and fruit composition were produced for eight ‘objective measures of fruit quality’: total anthocyanins, polymeric tannins, quercetin glycosides, malic acid, yeast assimilable nitrogen, β-damascenone, C6 alcohols and aldehydes, and 3-isobutyl-2-methoxypyrazine. Patterns of variation in anthocyanins and phenolic compounds were found to be most stable over time. Given this relative stability, management decisions focused on fruit quality could be based on zonal descriptions of anthocyanins or phenolics to increase profitability in some vineyards. In each vineyard, dormant season pruning weights and soil cores were collected at each location, elevation and soil apparent electrical conductivity surveys were completed, and remotely sensed imagery was captured by fixed wing aircraft and two satellite platforms at major phenological stages. The data collected were used to develop relationships among biophysical data, soil, imagery, and fruit composition. The standardised and aggregated samples from four vineyards over three seasons were included in the estimation of ‘common variograms’ to assess how this technique could aid growers in producing geostatistically rigorous maps of fruit composition variability without cumbersome, single season sampling efforts.