Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 How artificial intelligence (AI) is helping winegrowers to deal with adversity from climate change

How artificial intelligence (AI) is helping winegrowers to deal with adversity from climate change

Abstract

Artificial intelligence (AI) for winegrowers refers to robotics, smart sensor technology, and machine learning applied to solve climate change problems. Our research group has developed novel technology based on AI in the vineyard to monitor vineyard growth using computer vision analysis (VitiCanopy App) and grape maturity based on berry cell death to predict flavor and aroma profiles of berries and final wines. Smart sensor technology, such as low-cost electronic noses, has been developed and tested to monitor in the vineyard and the winery effects of smoke contamination and smoke taint, respectively, by analyzing in real-time samples and detecting taint levels and smoke-related compounds in berries, must and wines. AI has also been applied to big data collected by vineyards and on vertical vintage libraries of wines to develop specific models based on machine learning to predict wines’ aroma profiles based on weather and management information. Our ground-breaking developments on sensory analysis and biometrics from consumers include emotional response and physiological response, such as heart rate, blood pressure, skin temperature, and gesture changes. These parameters have been used to develop AI-based models to assess back viticultural and winemaking management throughout the grape and wine production chain. Information from this integrated AI system (smart sensor and sensory/biometrics) can be used to modify vineyard management strategies, such as canopy management and irrigation scheduling, to target specific consumer preference or wine styles uniformity. The same technology can also be applied for traceability, authentication, and counterfeiting measures using blockchain.     

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Sigfredo Fuentes1*, Eden Tongson1 and Claudia Gonzalez Viejo1

1Digital Agriculture, Food and Wine Research Group. School of Agriculture and Food. Faculty of Veterinary and Agricultural Sciences. The University of Melbourne. Royal Parade. 3010. Victoria. Australia.

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Développement de l’appareil végétatif et maturation du raisin sur quatre sols de Pomerol en 1995

The Pomerol vineyard, located 35 km east of Bordeaux, covers around 800 ha on the left bank of the Isle. There is a system of fluvial terraces with more or less coarse gravel and pebble spreading, resting on a Tertiary substratum ranging from the Middle to Upper Eocene to the Lower Oligocene (Dubreuilh, 1993). This interweaving of terraces of varying thickness results in a brutal superposition of differentiated materials which give rise to various types of soil. Several site studies in this sector of the Libounais show significant morphological and analytical differences from one point to another (Guilloux et al ., 1978; Duteau, 1982; Van Leeuwen et al.., 1989). The distribution of the soils of the Pomerol vineyard was studied and resulted in a cartography at 1/25000th (Merouge, 1995).

Soil management of interrow spacing as an important factor to protect the vineyard soils from runoff and erosion under the Mediterranean climate

Nearly one third of the Herault vineyard (south of France) is planted on soils very sensitive to water runoff and erosion

Studying heat waves effects on berry composition: first outlooks and challenges

Extreme climatic events, such as prolonged drought followed by intense flooding, increasingly impact viticulture, affecting vine physiology, productivity, and grape composition.

Postharvest elicitors and metabolic changes in wine grape berries

Wine grape berries respond to postharvest treatments with specific gaseous elicitors in terms of metabolic changes and composition. Short-term (3 days) high (30 KPa) CO2 treatment affects phenol compound concentration in skins of ‘Trebbiano toscano’ berries.

Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Varietal Riesling aroma relies strongly on the formation and liberation of bound aroma compounds. Floral monoterpenes, green C6-alcohols, fruity C13-norisoprenoids and spicy volatile phenols are predominantly bound to disaccharides, which are produced and stored in the grape berry during berry maturation.