Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 How artificial intelligence (AI) is helping winegrowers to deal with adversity from climate change

How artificial intelligence (AI) is helping winegrowers to deal with adversity from climate change

Abstract

Artificial intelligence (AI) for winegrowers refers to robotics, smart sensor technology, and machine learning applied to solve climate change problems. Our research group has developed novel technology based on AI in the vineyard to monitor vineyard growth using computer vision analysis (VitiCanopy App) and grape maturity based on berry cell death to predict flavor and aroma profiles of berries and final wines. Smart sensor technology, such as low-cost electronic noses, has been developed and tested to monitor in the vineyard and the winery effects of smoke contamination and smoke taint, respectively, by analyzing in real-time samples and detecting taint levels and smoke-related compounds in berries, must and wines. AI has also been applied to big data collected by vineyards and on vertical vintage libraries of wines to develop specific models based on machine learning to predict wines’ aroma profiles based on weather and management information. Our ground-breaking developments on sensory analysis and biometrics from consumers include emotional response and physiological response, such as heart rate, blood pressure, skin temperature, and gesture changes. These parameters have been used to develop AI-based models to assess back viticultural and winemaking management throughout the grape and wine production chain. Information from this integrated AI system (smart sensor and sensory/biometrics) can be used to modify vineyard management strategies, such as canopy management and irrigation scheduling, to target specific consumer preference or wine styles uniformity. The same technology can also be applied for traceability, authentication, and counterfeiting measures using blockchain.     

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Sigfredo Fuentes1*, Eden Tongson1 and Claudia Gonzalez Viejo1

1Digital Agriculture, Food and Wine Research Group. School of Agriculture and Food. Faculty of Veterinary and Agricultural Sciences. The University of Melbourne. Royal Parade. 3010. Victoria. Australia.

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Efectos del deshojado y de su combinación con el aclareo de Racimos en los componentes básicos de la producción y del Mosto, sobre cv. Tempranillo en la D.O. Ribera del Duero

Las técnicas de manejo del canopy de la vid pueden favorecer la adaptación de los sistemas de conducción a diversas condiciones de cultivo para obtener uva de calidad.

Variability in the content of coarse elements in a viticultural plot in the Graves appellation: relationship with geophysical data

Il a été souvent démontré (Seguin, 1970), que les meilleurs terroirs sont ceux qui présentent pendant la période de maturation du raisin, une régulation et une limitation de l’alimentation hydrique de la vigne. Si on s’intéresse aux facteurs influençant ce régime hydrique, on constate le rôle prépondérant du taux d’éléments grossiers non poreux qui limitent la réserve utile du sol en diminuant le taux de terre fine. De plus, ces éléments grossiers jouent également un rôle au niveau du pédo-climat thermique car leur conductivité thermique et leur chaleur spécifique sont plus élevées que celles de la terre fine. Ainsi le sol se réchauffera et se refroidira plus rapidement (Saini et McLean, 1967), (Gras, 1994).

Impact of long term agroecological and conventional practices on subsurface soil microbiota in Macabeu and Xarel·lo vineyards

There is a growing trend on the transition from conventional to agroecological management of vineyards. However, the impact of practices, such as reduced-tillage, organic fertilization and cover crops, is not well-understood regarding the soil microbial diversity, and its relationship with the soil physicochemical properties in the subsurface depth near the rooting zone. Soil bacterial diversity is an important contributor towards plant health, productivity and response to environmental stresses. A field experiment was conducted by sampling subsurface soil bacterial community (NGS and qPCR) near to the root zone of Macabeu and Xarel·lo vineyards, located at the Penedes. 3 organic (ECO) and 3 conventional (CON) vineyards, with more than 10 years of respective management were sampled (n=5 each plot). ECO practices did not affect bacterial and fungal abundance but increased significantly the ammonium oxidizing bacteria and alpha-diversity (Inv.Simpson). Interestingly beta-diversity was significantly affected by the management strategy. ANOSIM-tests revealed a significative effect of the management (ecological vs conventional) and plot, on the soil microbial structure (ASV abundance). Main phyla depicted were Proteobacteria, Actinobacteria and Acidobacteria, whose relative abundances were not affected by the management. EdgeR assay revealed a significant increase of Cyanobacteria and decrease of Gemmatimonadetes and Firmicutes phyla in ECO. Interestingly, the grapevine variety was not correlated with the soil microbial community structure. Mantel-test revealed an important correlation (Spearman) of some physicochemical parameters with the soil microbiota structure, in order of importance: texture, EC, pH Ca/Mg, Mg/P, K+, Mg2+, Ca2+, SO42-, and OM. N-NH4 and NTK, which were higher in the ECO managed soils, did not correlated significantly with the soil microbiome population. The results revealed the importance of combining a deep physicochemical characterization of each replicate with the microbial diversity assessment to gain better insights on the relationship between soil microbiome and vineyard management.

Terroir factors causing sensory and chemical variation in Riesling wines

The term “terroir”, originated in France, comprises the interaction of soil, climate, and topography with the vines of a specific variety and may be extended to the human impact due to the active choice of viticultural and oenological treatments.

The sensory features of the landscapes

When someone watches a hilly landscape, the image beauty creates emotions and frames of mind not easily forgettable, but sometimes man’s intervention by means of soil movement and reduction of the natural biodiversity can significantly modify the landscape and consequently the above-mentioned emotions. One speculates if sensory appreciation of a wine may be strongly affected by psychological factor: landscape beauty.