Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 A new AI-based system for early and accurate vineyard yield forecasting

A new AI-based system for early and accurate vineyard yield forecasting

Abstract

Vineyard yield forecasting is a key issue for vintage scheduling and optimization of winemaking operations. High errors in yield forecasting can be found in the wine industry, mainly due to the high spatial variability in vineyards, strong dependency on historical yield data, insufficient use of agroclimatic data and inadequate sampling methods. Today, errors can reach values within the range of 20%-30% per block. Thus, improved methodologies for early and accurate vineyard yield forecasting are needed. We proposed a new system for vineyard yield forecasting that integrates: systematic cluster counting, sampling and weight measurement; key agroclimatic parameters; vineyards spatial variability and the use of forecasting models based on artificial intelligence (AI). We carried out trials in high yield Cabernet Sauvignon (CS) vineyards located in Maule Valley (Chile), during seasons 2019 and 2020. We covered 13 blocks (66 ha) and two trellis systems (pergola and free-cordon). We characterized the spatial variability of blocks using Sentinel 2 images and NDVI analysis. We defined sampling units based on NDVI levels and we counted and sampled grape clusters and measured their weights during fruit-set and veraison. Key agroclimatic data were taken from public databases and we collected yield historical data from 2017 onwards. We trained and applied machine-learning models based on MARS, Random Forest and SVR algorithms. For the 2020 trial, in veraison, we obtained an average error of 7.6% per block against a 10.1% given by the traditional method (error is 23.5% for all the CS grapes of the company). Time dedicated to counting and sampling was significantly lower. As a result, we obtained a cost-efficient, early and accurate new system for vineyard yield forecasting.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Cuevas-Valenzuela, José1*; Caris-Maldonado, Carlos1; Reyes-Suárez, José Antonio2; González-Rojas, Álvaro1

1 Center for Research and Innovation (CRI) Viña Concha y Toro, Ruta k-650 km 10, Pencahue, Maule, Chile
2 Bioinformatics Department, Faculty of Engineering, Universidad de Talca, Campus Lircay, Talca, Maule, Chile

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

International Terroir Congress: 14 years of scientific proceedings!

We are a partner of the International Terroir Congress. For 4 months, our team has been putting the congress archives online. We are very proud to announce that the 14 years of archives are finally available. All archives of the International Terroir Congress are...

New food trend ahead? Highlighting the nutritional benefits of grapevine leaves

The wine industry produces an enormous amount of waste every year. A wider inclusion of disregarded by-products in the human diet or its use as a source of bioactive compounds is a good strategy for reducing waste. It will not only introduce an added value to a waste product but also come upon the European Union and United Nations’ demands towards more sustainable agricultural approaches and circular economy.

The generation of suspended cell wall material may limit the effect of ultrasound in some varieties

The disruptive effect exerted by high-power ultrasound (US) on plant cell walls, natural barriers to the diffusion of compounds of interest during the maceration of red wines, is established as the reason behind the chromatic improvement that its treatment causes. However, sometimes this improvement is not observed, especially with short maceration times. The presence of a high quantity of suspended cell wall material, which formation is favored by the sonication, could be the cause of this lack of positive results since this cell wall material has a high affinity for phenolic compounds.

Technical efficiency and socio-environmental sustainability in the wine sector: tradeoff or complementarity? Evidence from Italy

In recent decades, sustainability has risen to prominence across various industries, including agriculture, spurred by initiatives such as the new common agricultural policy and the farm to fork strategy within the European Union. Among agricultural activities, viticulture stands as a crucial player in sustainability, intertwining environmental, social, and economic dimensions, as exemplified by the OIV general principles of sustainable viticulture. Italy, one of the main players in the global wine market, has long been making efforts towards the introduction of sustainability-oriented practices and certifications.

Deciphering the function and regulation of VviEPFL9 paralogs to modulate stomatal density in grapevine through New Genomic Techniques

Stomata are microscopic pores mainly located in leaf epidermis, allowing gas exchanges between plants and atmosphere. Stomatal initiation relies on the transcription factor SPEECHLESS which is mainly regulated by the MAP kinase cascade, in turn controlled by small signaling peptides, the Epidermal Patterning Factors (EPF and EPF-Like), namely EPF1, EPF2 and EPFL9. While EPF1 and EPF2 induce the inhibition of SPEECHLESS, their antagonist, EPFL9, stabilizes it, leading to stomatal formation. In grapevine, there are two paralogs for EPFL9, VviEPFL9-1 and VviEPFL9-2. Despite their structural similarity, it remains unclear whether they are differentially regulated and have distinct roles.