Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 A new AI-based system for early and accurate vineyard yield forecasting

A new AI-based system for early and accurate vineyard yield forecasting

Abstract

Vineyard yield forecasting is a key issue for vintage scheduling and optimization of winemaking operations. High errors in yield forecasting can be found in the wine industry, mainly due to the high spatial variability in vineyards, strong dependency on historical yield data, insufficient use of agroclimatic data and inadequate sampling methods. Today, errors can reach values within the range of 20%-30% per block. Thus, improved methodologies for early and accurate vineyard yield forecasting are needed. We proposed a new system for vineyard yield forecasting that integrates: systematic cluster counting, sampling and weight measurement; key agroclimatic parameters; vineyards spatial variability and the use of forecasting models based on artificial intelligence (AI). We carried out trials in high yield Cabernet Sauvignon (CS) vineyards located in Maule Valley (Chile), during seasons 2019 and 2020. We covered 13 blocks (66 ha) and two trellis systems (pergola and free-cordon). We characterized the spatial variability of blocks using Sentinel 2 images and NDVI analysis. We defined sampling units based on NDVI levels and we counted and sampled grape clusters and measured their weights during fruit-set and veraison. Key agroclimatic data were taken from public databases and we collected yield historical data from 2017 onwards. We trained and applied machine-learning models based on MARS, Random Forest and SVR algorithms. For the 2020 trial, in veraison, we obtained an average error of 7.6% per block against a 10.1% given by the traditional method (error is 23.5% for all the CS grapes of the company). Time dedicated to counting and sampling was significantly lower. As a result, we obtained a cost-efficient, early and accurate new system for vineyard yield forecasting.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Cuevas-Valenzuela, José1*; Caris-Maldonado, Carlos1; Reyes-Suárez, José Antonio2; González-Rojas, Álvaro1

1 Center for Research and Innovation (CRI) Viña Concha y Toro, Ruta k-650 km 10, Pencahue, Maule, Chile
2 Bioinformatics Department, Faculty of Engineering, Universidad de Talca, Campus Lircay, Talca, Maule, Chile

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Sustainable yield management through fruitfulness and bunch architecture manipulation

Vineyards are highly variable and this variation is largely driven by environmental conditions and seasonal variation. For example, warm temperatures

Identification of riboflavin low producer yeasts to prevent the light-struck taste in white wines

Wine quality maintenance during the storage is a fundamental aspect for both wine producers and consumers. Nowadays, great attention has been given to the light effect

Quelles cibles moléculaires pourraient expliquer l’effet du terroir sur la composition des baies en sucres et acides?

Le manque de connaissances concernant la physiologie de la maturation du raisin a longtemps interdit d’interpréter l’effet du terroir ou du millésime sur la qualité des vendanges en termes moléculaires. L’hypothèse selon laquelle c’est la perméabilité membranaire qui contrôlerait le sens comme l’intensité du stockage des acides est pourtant déjà ancienne (1). L’étude du transport des acides organiques et de son coût énergétique permet d’avancer certaines hypothèses concemant les sites potentiels de la régulation du contenu en sucres et acides du raisin sous l’effet de paramètres environnementaux.

Prediction of aromatic attributes of red wines from its colour properties 

Wine perception is a multisensory experience that makes use of the sight, smell, and taste senses. When wine is sensorially assessed, the stimulus received generates multiple signals that tasters convert into organoleptic descriptors. Colour is commonly the first attribute evaluated during wine tasting. Moreover, the colour properties provide the taster with a priori information of the wine’s aroma. This preconceived perception is later confirmed or denied during the aroma evaluation.

Smartphone application use as a tool for water supply management

Uruguay had an average annual rainfall of 1200 mm characterized by a high monthly variability, which generates periods of water deficit and excess. The rational water management