Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 In-line sensing of grape juice press fractioning with UV-Vis spectroscopy

In-line sensing of grape juice press fractioning with UV-Vis spectroscopy

Abstract

UV-Visible spectroscopy in conjunction with chemometrics, was successfully applied to objectively differentiate sparkling wine press juice fractions of Pinot noir. Two measurements methods were applied: reflectance using a fibre optic probe in-line and transmission using a benchtop spectrophotometer. Different wavelength ranges for UV-Visible spectroscopy were evaluated and their ability to measure total phenolic concentrations in press juice fractions was compared. The differentiation of free run, early and late press fractions shows promise as a tool for the rapid discrimination of fractions when grapes for sparkling wine are pressed. Calibrations for total phenolics were prepared from press fraction spectral data using partial least square regression (PLSR) with a large number of wavelengths (230-700 nm) and multiple linear regression (MLR) using a small number of key wavelengths. Calibration performance for both reflectance and transmission spectra was similar, but the best performing calibration used reflectance spectra. Reflectance spectroscopy can thus be used in-line to predict total phenolics in grape juice with an acceptable accuracy and to discriminate press fractions. Insights from this research will lead to the design and building of a fitting that can be attached to any press outlet, with the potential to automate press fractioning.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

DAMBERGS Robert1*, LONGO Rocco2, KERSLAKE Fiona2

1 Charles Sturt University
2 Tasmanian Institute of Agriculture

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Comparing different vineyard sampling densities and patterns for spatial interpolation of intrinsic water use efficiency

The need to rationalize agricultural inputs has recently increased interest in assessing vineyard variability in order to implement variable rate input applications, so-called ‘precision viticulture’. In many viticultural areas globally, precision viticulture is already widely used such as for selective harvesting and variable rate application (VRA) of inputs such as irrigation and/or fertilizer. Robust VRA relies on having a geostatistically accurate map (of one or more vineyard attributes) requiring high sampling densities, which can be cost- and time-prohibitive to obtain. Previous work on spatial interpolation using kriging have upscaled ground-based measurements, but such upscaling strategies are applicable only when vineyard conditions are spatially continuous and satisfies the assumption of second-order stationary processes. Alternatively, mixed models that combine kriging and auxiliary information, such as the regression kriging (RK) method, are more instructive for spatial predictions. In order to improve prediction accuracies, it is therefore necessary to incorporate additional information to achieve accurate spatial patterns with low error.

Using atmospheric and statistical models to understand local climate and assess spatial temperature variability at a fine scale over the Stellenbosch wine district, South Africa

Atmospheric and statistical models were used to increase understanding of potential climatic impacts, resulting from mesoscale physical processes that cause significant temperature variability for viticulture within the Stellenbosch Wine of Origin district. Hourly temperature values from 16 automatic weather stations and 40 tinytag data loggers located in the vineyards were analysed.

Assessment of wine non-Saccharomyces yeast strains as promising producers of glutathione

AIM: Glutathione (GSH) is a non-protein thiol naturally present in grape berries and produced by yeasts during fermentation. It has a strong antioxidant activity, thus can be added during winemaking to limit the oxidative phenomena of wine, preserving sensory characteristics and stability, ultimately promoting a healthier product by reducing the need for SO2 addition.

CONSENSUS AND SENSORY DOMINANCE ARE DEPENDENT ON QUALITY CONCEPT DEFINITIONS

The definition of the term “quality” in sensory evaluation of food products does not seem to be consensual. Descriptive or liking methods are generally used to differentiate between wines (Lawless et al., 1997). Nevertheless, quality evaluation of a product such as wine can also relate to emotional aspects. As exposed by Costell (2002), product quality is defined as an integrated impression, like acceptability, pleasure, or emotional experiences during tasting. According to the ‘modality appropriateness’ hypothesis which predicts that wine tasters weigh the most suitable sensory inputs for a specific assess- ment (Freides, 1974; Welch & Warren, 1980), the nature of the quality definitions may modulate sensory influences.

Sustainable wine industry: supercritical fluid extraction as key technology for biorefinery enhancement

Supercritical carbon dioxide (sc-CO2) extraction is an environmentally friendly technology employed for bioactive compounds recovery from various natural sources and biomasses. The advantages of sc-co2 extraction include its selectivity, relatively mild operating conditions, which minimize the degradation of sensitive compounds, and the absence of potentially harmful organic solvents.